

Question 1.

Solution:

(i) $441 = 3 \times 3 \times 7 \times 7$

$$\begin{array}{r|rr} 3 & 441 \\ 3 & 147 \\ 7 & 49 \\ 7 & 7 \\ \hline & 1 \end{array}$$

$$= (3)^2 \times (7)^2 = (21)^2$$

∴ 441 is a perfect square

(ii) $576 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$

2	576
2	288
2	144
2	72
2	36
2	18
3	9
3	3
	1

$$\begin{aligned}
 &= (2)^2 \times (2)^2 \times (2)^2 \times (3)^2 \\
 &= (2 \times 2 \times 2 \times 3)^2 = (24)^2
 \end{aligned}$$

∴ 576 is a perfect square

(iii) $11025 = 3 \times 3 \times 5 \times 5 \times 7 \times 7$

3	11025
3	3675
5	1225
5	245
7	49
7	7
	1

$$\begin{aligned}
 &= (3)^2 \times (5)^2 \times (7)^2 \\
 &= (3 \times 5 \times 7)^2 = (105)^2
 \end{aligned}$$

∴ 11025 is a perfect square

(iv) $1176 = 2 \times 2 \times 2 \times 3 \times 7 \times 7$

2	1176
2	588
2	294
3	147
7	49
7	7
	1

$$= (2)^2 \times 2 \times 3 \times (7)^2$$

1176 is not a perfect square as it cannot be expressed as the product of pair of equal factors

(v) $5625 = 3 \times 3 \times 5 \times 5 \times 5 \times 5$

3	5625
3	1875
5	625
5	125
5	25
5	5
	1

$$\begin{aligned} &= (3)^2 \times (5)^2 \times (5)^2 \\ &= (3 \times 5 \times 5)^2 = (75)^2 \end{aligned}$$

∴ 5625 is a perfect square

(vi) $9075 = 3 \times 5 \times 5 \times 11 \times 11$

3	9075
5	3025
5	605
11	121
11	11
	1

$$= 3 \times (5)^2 \times (11)^2$$

∴ 9075 is not a perfect square as it cannot be expressed as a product of pair of equal factors

(vii) $4225 = 5 \times 5 \times 13 \times 13$

5	4225
5	845
13	169
13	13
	1

$$\begin{aligned} &= (5)^2 \times (13)^2 \\ &= (5 \times 13)^2 = (65)^2 \end{aligned}$$

$\therefore 4225$ is a perfect square

(viii) $1089 = 3 \times 3 \times 11 \times 11$

3	1089
3	363
11	121
11	11
	1

$$\begin{aligned} &= (3)^2 \times (11)^2 \\ &= (3 \times 11)^2 = (33)^2 \\ \therefore & 1089 \text{ is a perfect square} \end{aligned}$$

Question 2.

Solution:

(i) $1225 = 5 \times 5 \times 7 \times 7$

$$\begin{array}{r|l} 5 & 1225 \\ \hline 5 & 245 \\ \hline 7 & 49 \\ \hline 7 & 7 \\ \hline & 1 \end{array}$$

$$\begin{aligned} &= (5)^2 \times (7)^2 = (5 \times 7)^2 \\ &= (35)^2 \end{aligned}$$

Hence it is a perfect square and it is the square of 35

(ii) $2601 = 3 \times 3 \times 17 \times 17$

$$\begin{array}{r|l} 3 & 2601 \\ \hline 3 & 867 \\ \hline 17 & 289 \\ \hline 17 & 17 \\ \hline & 1 \end{array}$$

$$= (3)^2 \times (17)^2 = (3 \times 17)^2 = (51)^2$$

Hence it is a perfect square and it is the square of 51

(iii) $5929 = 7 \times 7 \times 11 \times 11$

$$\begin{array}{r|l} 7 & 5929 \\ \hline 7 & 847 \\ \hline 11 & 121 \\ \hline 11 & 11 \\ \hline & 1 \end{array}$$

$$= (7)^2 \times (11)^2 = (7 \times 11)^2 = (77)^2$$

It is a perfect square and is the the square of 77

$$(iv) 7056 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7$$

2	7056
2	3528
2	1764
2	882
3	441
3	147
7	49
7	7
	1

$$= (2)^2 \times (2)^2 \times (3)^2 \times (7)^2$$

$$= (2 \times 2 \times 3 \times 7)^2 = (84)^2$$

∴ It is a perfect square and is of the square of 84

$$(v) 8281 = 7 \times 7 \times 13 \times 13$$

7	8281
7	1183
13	169
13	13
	1

$$= (7)^2 \times (13)^2$$

$$= (7 \times 13)^2 = (91)^2$$

∴ It is a perfect square and is of the square of 91

Question 3.

Solution:

(i) Factors of 3675
 $3 \times 5 \times 5 \times 7 \times 7$

3	3675
5	1225
5	245
7	49
7	7
	1

$$= 3 \times (5)^2 \times (7)^2$$

∴ In order to get a perfect square the given number should be multiplied by 3

(ii) $2156 = 2 \times 2 \times 7 \times 7 \times 11$

2	2156
2	1078
7	539
7	77
11	11
	1

$$= (2)^2 \times (7)^2 \times 11$$

In order to get a perfect square, the given number should be multiplied by 11

(iii) $3332 = 2 \times 2 \times 7 \times 7 \times 17$

2	3332
2	1666
7	833
7	119
17	17
	1

$$= (2)^2 \times (7)^2 \times 17$$

In order to get a perfect square, the given number should be multiplied by 17

(iv) $2925 = 3 \times 3 \times 5 \times 5 \times 13$

3	2925
3	975
5	325
5	65
13	13
	1

$$= (3)^2 \times (5)^2 \times 13$$

In order to get a perfect square, the given number must be multiplied by 13

(v) $9075 = 3 \times 5 \times 5 \times 11 \times 11$

3	9075
5	3025
5	605
11	121
11	11
	1

$$= 3 \times (5)^2 \times (11)^2$$

In order to get a perfect square, the given number must be multiplied by 3

(vi) $7623 = 3 \times 3 \times 7 \times 11 \times 11$

3	7623
3	2541
7	847
11	121
11	11
	1

$$= (3)^2 \times (11)^2 \times 7$$

In order to get a perfect square, the given number should be multiplied by 7

$$(vii) 3380 = 2 \times 2 \times 5 \times 13 \times 13$$

$$\begin{array}{r|l} 2 & 3380 \\ 2 & 1690 \\ 5 & 845 \\ 13 & 169 \\ 13 & 13 \\ \hline & 1 \end{array}$$

$$= (2)^2 \times 5 \times (13)^2$$

In order to get a perfect square, the given number must be multiplied by 5

$$(viii) 2475 = 3 \times 3 \times 5 \times 5 \times 11$$

$$\begin{array}{r|l} 3 & 2475 \\ 3 & 825 \\ 5 & 275 \\ 5 & 55 \\ 11 & 11 \\ \hline & 1 \end{array}$$

$$= (3)^2 \times (5)^2 \times 11$$

In order to get a perfect square the given number must be multiplied by 11

Question 4.

Solution:

(i) 1575
 $= 3 \times 3 \times 5 \times 5 \times 7$

$$\begin{array}{r|rr} 3 & 1575 \\ 3 & 525 \\ \hline 5 & 175 \\ 5 & 35 \\ \hline 7 & 7 \\ \hline & 1 \end{array}$$

$$= (3)^2 \times (5)^2 \times 7$$

In order to get a perfect square, the given number must be divided by 7

(ii) $9075 = 3 \times 5 \times 5 \times 11 \times 11$

3	9075
5	3025
5	605
11	121
11	11
	1

$$= 3 \times (5)^2 \times (11)^2$$

In order to get a perfect square, the given number must be divided by 3

(iii) $4851 = 3 \times 3 \times 7 \times 7 \times 11$

3	4851
3	1617
7	539
7	77
11	11
	1

$$= (3)^2 \times (7)^2 \times 11$$

In order to get a perfect square, the given number be divided by 11

(iv) $3380 = 2 \times 2 \times 5 \times 13 \times 13$

2	3380
2	1690
5	845
13	169
13	13
	1

$$= (2)^2 \times 5 \times (13)^2$$

In order to get a perfect square, the given number must be divided by 5

(v) $4500 = 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 5$

2	4500
2	2250
3	1125
3	375
5	125
5	25
5	5
	1

$$= (2)^2 \times (3)^2 \times (5)^2 \times 5$$

In order to get a perfect square, the given number must be divided by 5

(vi) $7776 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

2	7776
2	3888
2	1944
2	972
2	486
3	243
3	81
3	27
3	9
3	3
	1

$$= (2)^2 \times (2)^2 \times 2 \times 3 \times (3)^2 \times (3)^2$$

In order to get a perfect square, the given number must be divided by 2×3 i.e., 6

(vii) $8820 = 2 \times 2 \times 3 \times 3 \times 5 \times 7 \times 7$

2	8820
2	4410
3	2205
3	735
5	245
7	49
7	7
	1

$$= (2)^2 \times (3)^2 \times 5 \times (7)^2$$

In order to get a perfect square, the given number must be divided by 5

(viii) $4056 = 2 \times 2 \times 2 \times 3 \times 13 \times 13$

2	4056
2	2028
2	1014
3	507
13	169
13	13
	1

$$= (2)^2 \times 2 \times 3 \times (13)^2$$

In order to get a perfect square, the given number must be divided by 2×3 i.e., 6

Question 5.

Solution:

The largest two digit number = 99

$$\begin{array}{r} 9 \\ 9 \sqrt{99} \\ \hline 81 \\ \hline 18 \end{array}$$

Finding the square root of 99, we get remainder = 18

∴ The greatest two digit number which is a perfect square will be = $99 - 18 = 81$

Question 6.

Solution:

The largest 3 digit number = 999

$$\begin{array}{r} 31 \\ 3 \sqrt{999} \\ \hline 9 \\ \hline 61 \\ 61 \\ \hline 38 \end{array}$$

Finding the square root of 999, we get remainder = 38

∴ The greatest 3 digit number which is a perfect square = $999 - 38 = 961$