. derivative of cotx by first principle
Best Answer
Derivation of Cot x by First Principle:
Let us take f(x) = cot x.
By the first principle, the derivative of f(x) is given by the following limit.
f'(x) = limₕ→₀ [f (x + h) - f(x)] / h ... (1)
Since f(x) = cot x,
So, f (x + h) = cot (x + h).
Substituting these in (1),
f'(x) = limₕ→₀ [cot (x + h) - cot x] / h
= limₕ→₀ [ [cos (x + h) / sin (x + h)] - [cos x / sin x]] / h
= limₕ→₀ [ [sin x cos (x + h) - cos x sin (x + h)] / [sin x · sin (x + h)] ]/ h
We have, sin A cos B - cos A sin B = sin (A - B).
f'(x) = limₕ→₀ [ sin (x - (x + h))] / [ h sin x · sin (x + h)]
= limₕ→₀ [ sin (-h)] / [ h sin x · sin (x + h)]
We have sin (-h) = - sin h.
f'(x) = - limₕ→₀ (sin h)/ h · limₕ→₀ 1 / [sin x · sin (x + h)]
By limit formulas, limₕ→₀ (sin h)/ h = 1.
f'(x) = -1 [ 1 / (sin x · sin (x + 0))] = -1/sin2x
We know that the reciprocal of sin is csc. So,
f'(x) = -csc2x.
Hence proved.
Related questions