Explanation:
We know that if the equation is dy/dx+P(x)y=Q(x) then the integrating factor =e∫P(x)dx
Given the differential equation is
y'+y ϕ'(x)- ϕ(x). ϕ'(x)=0
⇒y'+ ϕ'(x)y= ϕ(x). ϕ'(x)
Then integrating factor =e∫ϕ'(x)dx=eϕ(x)
Multiplying both sides by integrating factor we get,
e ϕ(x)y'+e ϕ(x)' ϕ(x)y=e ϕ(x)(x) ϕ'(x)
⇒d(y.e ϕ(x))=e ϕ(x)(x) ϕ'(x)
Integrating both sides,
∫d(y.e ϕ(x))=∫e ϕ(x) ϕ(x) ϕ'(x)dx
⇒ye ϕ(x)=ϕ(x)∫eϕ(x)∫ϕ'(x)dx-∫(d( ϕ(x))/dx ×∫eϕ(x) ϕ'(x)dx)dx
⇒ye ϕ(x)= ϕ(x)eϕ(x)-∫ϕ'(x)e ϕ(x)dx
⇒ye ϕ(x)= ϕ(x)e ϕ(x)-e ϕ(x)+c, where c is an arbitrary constant
⇒y= ϕ(x)-1+ce- ϕ(x), multiplying both sides by e- ϕ(x)
Final Answer:
Hence the correct option is (A). i.e y=ce -ϕ(x)+ ϕ(x)-1