CBSE Worksheet for chapter 9 Trigonometry class 10
Worksheet For class 10
Find CBSE Worksheet for chapter 9 Trigonometry class 10
CLASS10
BOARD: CBSE
Mathematic Worksheet  9
TOPIC: Trigonometry
For other CBSE Worksheet for class 10 Mathematic check out main page of Physics Wallah.
SUMMARY
tan θ= sin θ/cosθ and cotθ =cosθ /sin θ
Trigonometric table:
Trigonometric Identities:
 sin^{2}θ + cos^{2}θ = 1
 1 + tan^{2}θ = sec^{2}θ
 1 + cot^{2}θ = cosec^{2}θ
Trigonometric ratios of complementary angles:
 Sin (90^{0} θ) = cos θ
 cos (90^{0} θ) = sin θ
 Tan (90^{0} θ) = cot θ
 Cot (90^{0} θ) = tan θ
 Sec (90^{0} θ) = cosec θ
 Cosec (90^{0} θ) = sec θ
OBJECTIVE
1. If 5tan θ = 4, then value of is : (5 sinθ3 cosθ)/(5 sinθ+3 cosθ)
 1/3
 1/6
 4/5
 2/3
2. Given 3sin β + 5cos β = 5, then the value of (3cos β 5sin β)^{2} is equal to:
 9
 9/5
 1/3
 1/9
3. If tan θ= 4, then (tanθ/(sin^{3} θ)/cosθ+sinθcosθ))is equal to:
 0
 2√2
 √2
 1
4. As x increases from 0 to π/2 , the value of cos x :
 Increases
 decreases
 remains constant
 increases, then decreases
5. Value of x from the equation
x sin π/6 cos^{2} π/4 = (cot^{2} π/6 sec π/3 tan π/4)/(cosec^{2} π/4 cosec π/6) is :
 4
 6
 2
 0
6. The area of a triangle is 12 sq. cm. Two sides are 6 cm and 12 cm. The included angle is :
 cos^{1}(1/3)
 cos^{1}(1/6)
 cos^{1}(1/6)
 Sin^{1}(1/3)
7. If α + β = 90^{0} and α = 2β, then cos^{2} + sin^{2}β equals to:
 1/2
 0
 1
 2
SUBJECTIVE

If A + B = 90^{0}, prove that:
√(tanAtanB+tanAcotB)/sinAsecB(sin^{2} B)/(cos^{2} A)=tanA  tanθ/(1cotθ) +cotθ/(1tanθ) = secθcosecθ+1
 (sinA+cosA)/(sinAcosA)+ (sinAcosA)/(sinA+cosA)= 2/(sin^{2} Acos^{2} A)=2/(12cos^{2} A)
 ( sin^{8}θcos^{8}θ) = (sin^{2}θcos^{2}θ)(1sin^{2} θcos^{2} θ)
 (tanθ+secθ1)/(tanθsecθ+1) =(1+sinθ)/cosθ
 If x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, then prove that: x^{2}+y^{2}+z^{2}=r^{2}.

Prove that:
1/(secxtanx)1/cosx=1/cosx1/(secx+tanx)  Evaluate: tan 7^{0} tan 23^{0} tan 60^{0} tan 67^{0} tan 83^{0} + cot54^{0} /tan 36^{0} + sin 20^{0} sec 70^{0} 2
 Evaluate: cosec^{2}58^{0}  cot 58^{0}tan 32^{0}  tan 13^{0} tan 37^{0} tan 45^{0} tan 53^{0} tan 77^{0}.
 If 5x = sec θ and = tanθ, find the value of 5 (x^{2}1/x^{2} ).
 Find the value of sec 60^{0} geometrically.
 Prove the following: sin A(1 + tan A) + cos A(1 + cot A) = sec A + cosec A
Prove the following (Q 2 to Q5)
Answers:
Objective:
 b
 a
 d
 b
 b
 d
 a
Subjective:
 √3
 1
 2
Related Link
 Class 10 Physics Notes
 Class 10 Chemistry Notes
 Class 10 Biology Notes
 Class 10 Maths Notes
 Chapter Wise Quiz Class 10 Physics
 Chapter Wise Quiz Class 10 Chemistry
 Chapter Wise Quiz Class 10 Biology
 Chapter Wise Quiz Class 10 Maths
 Previous year Board Papers
 Sample Papers Maths Class 10
 Sample Papers Science Class 10
 NCERT Maths Solutions Class10