The number system is the method of using numbers to perform tasks like counting, measuring, and calculating. It is an essential part of mathematics, and it has many practical applications in our daily lives, from simple counting to more complex math problems.
Natural numbers are the numbers which we use for counting and the list starts from 1, 2, 3, 4, and so on.
Natural numbers are the base for all other types of numbers.
Whole numbers are the set of numbers that include all the natural numbers along with 0.
Every natural number is a whole number, but zero is not a natural number.
Integers are an extension of the whole numbers and include all the whole numbers as well as their negative counterparts.
Integers help in real-life situations like temperatures below zero or money borrowed.
A rational number is a number that can be expressed in the form p/q where p and q are integers and q ≠ 0.
Examples: ½, -¾, 5/2, and 0.
Rational numbers can be written as decimals too.
All integers and whole numbers are also rational numbers because they can be written as fractions (for example, 5 = 5/1).
A number that cannot be written in the form of p/q is called an irrational number.
Irrational numbers fill the gaps between rational numbers on the number line.
The square root spiral is a way to show square roots on paper.
This makes a spiral pattern that helps us see how square roots increase step by step.
When a fraction has a square root in its denominator, we remove it using rationalization.
Example:
1/√3 = √3/3.
We multiply both the top and bottom by √3 to make the denominator rational. This process helps in solving equations easily.