ICSE Class 10 Maths Selina Solutions Chapter 21: Trigonometry is the name of the branch of mathematics that studies triangular measurements. Trigonometric identities are demonstrated by the use of trigonometrical ratios and their relations. Other topics discussed in this chapter include the usage of trigonometrical tables and the trigonometrical ratios of complementary angles.
Since this chapter provides the groundwork for more advanced mathematics, students should become well-versed in it. For this reason, We have developed the Selina Solutions for Class 10 Mathematics, which were made by knowledgeable faculty members with extensive backgrounds in academia. Additionally, this helps pupils develop their problem-solving abilities, which are critical from the perspective of exams.ICSE Class 10 Maths Selina Solutions Chapter 21 PDF
1. sec A – 1/ sec A + 1 = 1 – cos A/ 1 + cos A
Solution:
2. 1 + sin A/ 1 – sin A = cosec A + 1/ cosec A – 1
Solution:
3. 1/ tan A + cot A = cos A sin A
Solution:
Taking L.H.S,4. tan A – cot A = 1 – 2 cos 2 A/ sin A cos A
Solution:
Taking LHS,5. sin 4 A – cos 4 A = 2 sin 2 A – 1
Solution:
Taking L.H.S,
sin 4 A – cos 4 A = (sin 2 A) 2 – (cos 2 A) 2 = (sin 2 A + cos 2 A) (sin 2 A – cos 2 A) = sin 2 A – cos 2 A = sin 2 A – (1 – sin 2 A) [Since, cos 2 A = 1 – sin 2 A] = 2sin 2 A – 1 – Hence Proved6. (1 – tan A) 2 + (1 + tan A) 2 = 2 sec 2 A
Solution:
Taking L.H.S, (1 – tan A) 2 + (1 + tan A) 2 = (1 + tan 2 A + 2 tan A) + (1 + tan 2 A – 2 tan A) = 2 (1 + tan 2 A) = 2 sec 2 A [Since, 1 + tan 2 A = sec 2 A] – Hence Proved7. cosec 4 A – cosec 2 A = cot 4 A + cot 2 A
Solution:
cosec 4 A – cosec 2 A = cosec 2 A(cosec 2 A – 1) = (1 + cot 2 A) (1 + cot 2 A – 1) = (1 + cot 2 A) cot 2 A = cot 4 A + cot 2 A = R.H.S – Hence Proved8. sec A (1 – sin A) (sec A + tan A) = 1
Solution:
Taking L.H.S, sec A (1 – sin A) (sec A + tan A)9. cosec A (1 + cos A) (cosec A – cot A) = 1
Solution:
Taking L.H.S,10. sec 2 A + cosec 2 A = sec 2 A . cosec 2 A
Solution:
Taking L.H.S,11. (1 + tan 2 A) cot A/ cosec 2 A = tan A
Solution:
Taking L.H.S,12. tan 2 A – sin 2 A = tan 2 A. sin 2 A
Solution:
Taking L.H.S, tan 2 A – sin 2 A13. cot 2 A – cos 2 A = cos 2 A. cot 2 A
Solution:
Taking L.H.S, cot 2 A – cos 2 A14. (cosec A + sin A) (cosec A – sin A) = cot 2 A + cos 2 A
Solution:
Taking L.H.S, (cosec A + sin A) (cosec A – sin A) = cosec 2 A – sin 2 A = (1 + cot 2 A) – (1 – cos 2 A) = cot 2 A + cos 2 A = R.H.S – Hence Proved15. (sec A – cos A)(sec A + cos A) = sin 2 A + tan 2 A
Solution:
Taking L.H.S, (sec A – cos A)(sec A + cos A) = (sec 2 A – cos 2 A) = (1 + tan 2 A) – (1 – sin 2 A) = sin 2 A + tan 2 A = RHS – Hence Proved16. (cos A + sin A) 2 + (cosA – sin A) 2 = 2
Solution:
Taking L.H.S, (cos A + sin A) 2 + (cosA – sin A) 2 = cos2 A + sin2 A + 2cos A sin A + cos2 A – 2cosA.sinA = 2 (cos 2 A + sin 2 A) = 2 = R.H.S – Hence Proved17. (cosec A – sin A)(sec A – cos A)(tan A + cot A) = 1
Solution:
Taking LHS, (cosec A – sin A)(sec A – cos A)(tan A + cot A)18. 1/ sec A + tan A = sec A – tan A
Solution:
Taking LHS,19. cosec A + cot A = 1/ cosec A – cot A
Solution:
Taking LHS, cosec A + cot A20. sec A – tan A/ sec A + tan A = 1 – 2 secA tanA + 2 tan 2 A
Solution:
Taking LHS,21. (sin A + cosec A) 2 + (cos A + sec A) 2 = 7 + tan 2 A + cot 2 A
Solution:
Taking LHS, (sin A + cosec A) 2 + (cos A + sec A) 2 = sin 2 A + cosec 2 A + 2 sin A cosec A + cos 2 A + sec 2 A + 2cos A sec A = (sin 2 A + cos 2 A ) + cosec 2 A + sec 2 A + 2 + 2 = 1 + cosec 2 A + sec 2 A + 4 = 5 + (1 + cot 2 A) + (1 + tan 2 A) = 7 + tan 2 A + cot 2 A = RHS – Hence Proved22. sec 2 A. cosec 2 A = tan 2 A + cot 2 A + 2
Solution:
Taking, RHS = tan 2 A + cot 2 A + 2 = tan 2 A + cot 2 A + 2 tan A. cot A = (tan A + cot A) 2 = (sin A/cos A + cos A/ sin A) 2 = (sin2 A + cos2 A/ sin A.cos A) 2 = 1/ cos 2 A. sin 2 A = sec 2 A. cosec 2 A = LHS – Hence Proved23. 1/ 1 + cos A + 1/ 1 – cos A = 2 cosec 2 A
Solution:
Taking LHS,24. 1/ 1 – sin A + 1/ 1 + sin A = 2 sec 2 A
Solution:
Taking LHS,1. Prove that:
Solution:
2. If x cos A + y sin A = m and x sin A – y cos A = n, then prove that:
x 2 + y 2 = m 2 + n 2
Solution:
Taking RHS, m 2 + n 2 = (x cos A + y sin A) 2 + (x sin A – y cos A) 2 = x 2 cos 2 A + y 2 sin 2 A + 2xy cos A sin A + x 2 sin 2 A + y 2 cos 2 A – 2xy sin A cos A = x 2 (cos 2 A + sin 2 A) + y 2 (sin 2 A + cos 2 A) = x 2 + y 2 [Since, cos 2 A + sin 2 A = 1] = RHS3. If m = a sec A + b tan A and n = a tan A + b sec A, prove that m 2 – n 2 = a 2 – b 2
Solution:
Taking LHS, m 2 – n 2 = (a sec A + b tan A) 2 – (a tan A + b sec A) 2 = a 2 sec 2 A + b 2 tan 2 A + 2 ab sec A tan A – a 2 tan 2 A – b 2 sec 2 A – 2ab tan A sec A = a 2 (sec 2 A – tan 2 A) + b 2 (tan 2 A – sec 2 A) = a 2 (1) + b 2 (-1) [Since, sec 2 A – tan 2 A = 1] = a 2 – b 2 = RHS1. Show that:
(i) tan 10 o tan 15 o tan 75 o tan 80 o = 1
Solution:
Taking, tan 10 o tan 15 o tan 75 o tan 80 o = tan (90 o – 80 o ) tan (90 o – 75 o ) tan 75 o tan 80 o = cot 80 o cot 75 o tan 75 o tan 80 o = 1 [Since, tan θ x cot θ = 1](ii) sin 42 o sec 48 o + cos 42 o cosec 48 o = 2
Solution:
Taking, sin 42 o sec 48 o + cos 42 o cosec 48 o = sin 42 o sec (90 o – 42 o ) + cos 42 o cosec (90 o – 42 o ) = sin 42 o cosec 42 o + cos 42 o sec 42 o = 1 + 1 [Since, sin θ x cosec θ = 1 and cos θ x sec θ = 1] = 2(iii) sin 26 o / sec 64 o + cos 26 o / cosec 64 o = 1
Solution:
Taking,2. Express each of the following in terms of angles between 0°and 45°:
(i) sin 59°+ tan 63°
(ii) cosec 68°+ cot 72°
(iii) cos 74°+ sec 67°
Solution:
(i) sin 59°+ tan 63° = sin (90 – 31)°+ tan (90 – 27)° = cos 31°+ cot 27° (ii) cosec 68°+ cot 72° = cosec (90 – 22)°+ cot (90 – 18)° = sec 22°+ tan 18° (iii) cos 74°+ sec 67° = cos (90 – 16)°+ sec (90 – 23)° = sin 16°+ cosec 23°3. Show that:
Solution:
4. For triangle ABC, show that:
(i) sin (A + B)/ 2 = cos C/2
(ii) tan (B + C)/ 2 = cot A/2
Solution:
We know that, in triangle ABC ∠A + ∠B + ∠C = 180 o [Angle sum property of a triangle] (i) Now, (∠A + ∠B)/ 2 = 90 o – ∠C/ 2 So, sin ((A + B)/ 2) = sin (90 o – C/ 2) = cos C/ 2 (ii) And, (∠C + ∠B)/ 2 = 90 o – ∠A/ 2 So, tan ((B + C)/ 2) = tan (90 o – A/ 2) = cot A/ 25. Evaluate:
Solution:
6. A triangle ABC is right angled at B; find the value of (sec A. cosec C – tan A. cot C)/ sin B
Solution:
As, ABC is a right angled triangle right angled at B So, A + C = 90 o (sec A. cosec C – tan A. cot C)/ sin B = (sec (90 o – C). cosec C – tan (90 o – C). cot C)/ sin 90 o = (cosec C. cosec C – cot C. cot C)/ 1 = cosec 2 C – cot 2 C = 1 [Since, cosec 2 C – cot 2 C = 1]1. Use tables to find sine of:
(i) 21°
(ii) 34° 42′
(iii) 47° 32′
(iv) 62° 57′
(v) 10° 20′ + 20° 45′
Solution:
(i) sin 21 o = 0.3584 (ii) sin 34 o 42’= 0.5693 (iii) sin 47 o 32’= sin (47 o 30′ + 2′) =0.7373 + 0.0004 = 0.7377 (iv) sin 62 o 57′ = sin (62 o 54′ + 3′) = 0.8902 + 0.0004 = 0.8906 (v) sin (10 o 20′ + 20 o 45′) = sin 30 o 65′ = sin 31 o 5′ = 0.5150 + 0.0012 = 0.51622. Use tables to find cosine of:
(i) 2° 4’
(ii) 8° 12’
(iii) 26° 32’
(iv) 65° 41’
(v) 9° 23’ + 15° 54’
Solution:
(i) cos 2° 4’ = 0.9994 – 0.0001 = 0.9993 (ii) cos 8° 12’ = cos 0.9898 (iii) cos 26° 32’ = cos (26° 30’ + 2’) = 0.8949 – 0.0003 = 0.8946 (iv) cos 65° 41’ = cos (65° 36’ + 5’) = 0.4131 -0.0013 = 0.4118 (v) cos (9° 23’ + 15° 54’) = cos 24° 77’ = cos 25° 17’ = cos (25° 12’ + 5’) = 0.9048 – 0.0006 = 0.90423. Use trigonometrical tables to find tangent of:
(i) 37°
(ii) 42° 18′
(iii) 17° 27′
Solution:
(i) tan 37 o = 0.7536 (ii) tan 42 o 18′ = 0.9099 (iii) tan 17 o 27′ = tan (17 o 24′ + 3′) = 0.3134 + 0.0010 = 0.31441. Prove the following identities:
2. If sin A + cos A = p
and sec A + cosec A = q, then prove that: q(p 2 – 1) = 2p
Solution :
Taking the LHS, we have q(p 2 – 1) = (sec A + cosec A) [(sin A + cos A) 2 – 1] = (sec A + cosec A) [sin 2 A + cos 2 A + 2 sin A cos A – 1] = (sec A + cosec A) [1 + 2 sin A cos A – 1] = (sec A + cosec A) [2 sin A cos A] = 2sin A + 2 cos A = 2p3. If x = a cos θ and y = b cot θ, show that:
a 2 / x 2 – b 2 / y 2 = 1
Solution:
Taking LHS, a 2 / x 2 – b 2 / y 24. If sec A + tan A = p, show that:
sin A = (p 2 – 1)/ (p 2 + 1)
Solution:
Taking RHS, (p 2 – 1)/ (p 2 + 1)5. If tan A = n tan B and sin A = m sin B, prove that:
cos 2 A = m 2 – 1/ n 2 – 1
Solution:
Given, tan A = n tan B n = tan A/ tan B And, sin A = m sin B m = sin A/ sin B Now, taking RHS and substitute for m and n m 2 – 1/ n 2 – 16. (i) If 2 sin A – 1 = 0, show that:
sin 3A = 3 sin A – 4 sin 3 A
(ii) If 4 cos 2 A – 3 = 0, show that:
cos 3A = 4 cos 2 A – 3 cos A
Solution:
(i) Given, 2 sin A – 1 = 0 So, sin A = ½ We know, sin 30 o = 1/2 Hence, A = 30 o Now, taking LHS sin 3A = sin 3(30 o ) = sin 30 o = 1 RHS = 3 sin 30 o – 4 sin 3 30 o = 3 (1/2) – 4 (1/2) 3 = 3 – 4(1/8) = 3/2 – ½ = 1 Therefore, LHS = RHS (ii) Given, 4 cos 2 A – 3 = 0 4 cos 2 A = 3 cos 2 A = 3/4 cos A = √3/2 We know, cos 30 o = √3/2 Hence, A = 30 o Now, taking LHS = cos 3A = cos 3(30 o ) = cos 90 o = 0 RHS = 4 cos 3 A – 3 cos A = 4 cos 3 30 o – 3 cos 30 o = 4 (√3/2) 3 – 3 (√3/2) = 4 (3√3/8) – 3√3/2 = 3√3/2 – 3√3/2 = 0 Therefore, LHS = RHS7. Evaluate:
Solution:
8. Prove that:
(i) tan (55 o + x) = cot (35 o – x)
(ii) sec (70 o – θ) = cosec (20 o + θ)
(iii) sin (28 o + A) = cos (62 o – A)
(iv) 1/ (1 + cos (90 o – A)) + 1/(1 – cos (90 o – A)) = 2 cosec 2 (90 o – A)
(v) 1/ (1 + sin (90 o – A)) + 1/(1 – sin (90 o – A)) = 2 sec 2 (90 o – A)
Solution:
(i) tan (55 o + x) = tan [90 o – (35 o – x)] = cot (35 o – x) (ii) sec (70 o – θ ) = sec [90 o – (20 o + θ )] = cosec (20 o + θ ) (iii) sin (28 o + A) = sin [90 o – (62 o – A)] = cos (62 o – A) (iv)Concept Clarity : The solutions provide detailed explanations and step-by-step methods to solve trigonometric problems, helping students understand the fundamental concepts and identities thoroughly.
Problem-Solving Skills : By practicing various types of problems, students can enhance their analytical and problem-solving skills, which are essential for tackling trigonometric equations and identities.
Exam Preparation : The solutions are aligned with the ICSE syllabus and exam pattern, offering students a comprehensive resource for effective preparation and improving their performance in exams.
Confidence Building : Regular practice with these solutions can boost students' confidence by making them familiar with different problem-solving techniques and reducing their anxiety towards trigonometry.
Error Minimization : The step-by-step approach helps students identify and learn from their mistakes, ensuring a better understanding and minimizing errors in solving trigonometric problems.