Introduction
Trignometric equations of Class 11
Trigonometric Equations
- If sin θ = sin α or cosec θ = cosec α then θ = nπ + (-1)nα, n ∈ I
- If cos θ = cos α or sec θ = sec α then θ = 2nπ ± α, n ∈ I
- If tan θ = tan α or cot θ = cot α then θ = nπ + α, n ∈ I
- If sin2 θ = sin2 α or cos2 θ = cos2 α or tan2θ = tan2α then θ = nπ ± α, n ∈ I
- If cos θ = 0 then θ = nπ + π/2, n ∈ I
- If cos θ = -1 then θ = 2nπ + π, n ∈ I
- If sin θ = 0 then θ = nπ, n ∈ I
- If sin θ = 1 then θ = 2nπ + π/2, n ∈ I
- If sin θ = -1 then θ = 2nπ - π/2 n ∈ I
- Equation of the type of a cos θ + b sin θ = c
then put a = r cos α, b = r sin α so that r = √a2 +b2, α = tan-1 b/a
Then the expression reduces to cos (θ - α) = c/r
Or θ - α = 2nπ ± cos-1 (c/r)
⇒ θ = α + 2nπ ± cos-1 (c/r), n ∈ I