Trigonometric Identities
Trignometric functions of Class 11
- Sin nπ = 0 if n∈I
- Cos nπ/2 = 0 if n is an odd integer
- cos (nπ + θ) = (-1)n cos θ, n ∈ I
- sin (nπ + θ) = (-1)n sin θ, n ∈ I
- Cos (nπ/2 +θ) = (−1)(n + 1)/2 Sinθ, if n is odd integer
- Sin (nπ/2 +θ) = (−1)(n-1/2) Cosθ, if n is odd integer
For Any Three Angles A,B,C
(a) sin (A+B+C) = sin A cos B cos C + sin B cos C cos A + sin C cos A cos B − sin A sin B sin C
(b) cos (A+B+C) = cos A cos B cos C – cos A sin B sin C - cos B sin A sin C – cos C sin A sin B
(c) tan (A+B+C) =
(d) cot (A+B+C) =
Greatest And Least Values of a cosθ + b sinθ
Some Important Identities
If A+B+C = π then
- sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C
- cos 2A + cos 2B + cos 2C = -1 –4 cos A cos B cos C
- sin A + sin B + sin C = 4 CosA/2 cos B/2 cosC/2
- cos A + cos B + cos C = 1 + 4 sin A/2 sin B/2 sin C/2
- tan A + tan B + tan C = tan A tan B tan C
- cot A cot B + cot B cot C + cot C cot A = 1
- tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2 = 1
- cot A/2 + cot B/2 + cot C/2 = cot A/2. cot B/2. cot C/2
Two Useful Identities
-
cos α + cos β + cos γ + cos (α+β+γ) = 4
-
sin α + sin β + sin γ - sin (α+β+γ) = 4