Trigonometric Ratios Of Complementary Angles
Trigonometry of Class 10
Let us construct a right-angled ΔABC in which ∠ABC = θ, ∠BCA = 90º.
Then we have ∠BAC = (90º – θ). Angles θ and (90º – θ) are defined as complementary angles.
In figure (i), the sides are labelled corresponding to angle θ and in figure (ii), the sides are labelled corresponding to angle (90º – θ).
From figure (ii), we have sin (90º – θ)= BC/BA and from figure (i), we have BC/BA = cos θ.
∴ sin (90º – θ)= BC/BA = cos θ.
Similarly, cos (90º – θ)= AC/BA = sIN θ
tan (90º – θ)=
cosec (90º – θ)=
sec (90º – θ) =
cot (90º – θ) = .
If A and B are two complementary acute angles, i.e., A + B = 90º, then we have
sin A = sin (90º – B) = cos B
cos A = cos (90º – B) = sin B
tan A = tan (90º – B) = cot B
cosec A = cosec (90º – B) = sec B
sec A = sec (90º – B) = cosec B
cot A = cot (90º – B) = tan B.