
Logical Reasoning CSEET Jan 2026 MAHA Marathon covers all major topics such as Analogy, Series, Alphabet Test, Assertion–Reason, Blood Relations, Calendars, Clocks, Coding–Decoding, Cause–Effect, Syllogism, Ranking, and Decision Making, with clear concepts, formulas, and shortcuts.
The content focuses on exam-oriented problem-solving strategies, common traps, and step-by-step worked examples to build accuracy and confidence. It is designed to strengthen logical thinking and ensure thorough preparation for competitive exams like CSEET.
Logical Reasoning for competitive exams is divided into Logical, Verbal, and Non-Verbal sections. Logical and Verbal reasoning carry significant weight. This guide focuses on core concepts and problem-solving for key topics such as Blood Relation, Calendar, Clocks, Syllogism, and Venn Diagrams, addressing common student difficulties through in-depth coverage and practice.
Analogy is a reasoning method that identifies relationships and comparisons between items. Questions often involve applying a discovered relationship from one pair to another. It also includes "odd one out" tasks, requiring identification of an item that deviates from a shared pattern.
Numerical Analogy: Relates to numbers, e.g., finding the odd one out or a similar number pair based on mathematical operations (squares, cubes, multiplication, addition, etc.).
Alphabetical / Word Analogy: Relates to words or letters, e.g., identifying the odd word out or a similar word pair.
Identify the Pattern: Determine the relationship in the given pair first.
Use the Options: Options can provide crucial clues if the pattern isn't immediately clear.
Joey : Kangaroo :: Calf : ?
Relationship: Joey is the young of a Kangaroo.
Solution: Calf is the young of a Cattle.
Curd : Milk :: Shoe : ?
Relationship: Curd is made from Milk.
Solution: Shoe is made from Leather.
101 : 302 :: 11 : ?
Relationship: (Number × 3) - 1. (101 × 3) - 1 = 302.
Solution: (11 × 3) - 1 = 32.
Skating : Rink :: Tennis : ?
Relationship: Skating is performed in a Rink.
Solution: Tennis is played on a Court.
Alphanumeric Series questions involve sequences of alphabets, numbers, and symbols. The goal is to identify elements based on specific conditions. A common mistake, especially in online exams, is miscounting elements on the screen. Always double-check your count to avoid errors.
Series: Y # 3 C % T 9 L @ 7 F 6 G A P 4 $ H 2 E J 5 U * 8 B N # P
Question: If symbols followed by consonants interchange, which element will be 3rd from the right end?
Analysis: # P becomes P #. The sequence ends ...B N P #.
Solution: The 3rd element from the right is N.
Question: How many numbers are immediately preceded by a consonant but NOT immediately followed by a consonant? (Condition: Consonant, Number, Not-a-Consonant)
P 4 $ (Passes)
H 2 E (Passes)
Solution: There are 2 such arrangements.
Series: 2 P J @ 8 $ L B 1 V # 3 E % G 4 H I 9 K U & 6
Question: How many vowels are immediately followed by a number but NOT immediately preceded by a consonant? (Condition: Not-a-Consonant, Vowel, Number)
Analysis: No such instance in this specific series. (The lecturer's example identifies U*8 from a different series, showing a vowel followed by a number and preceded by a symbol).
Solution: 0 (based on the provided series).
When a question asks for a position relative to another position (e.g., 8th to the right of the 13th from the left), use this rule:
Opposite Directions (Left/Right): ADD (+) the positions.
Same Directions (Left/Left or Right/Right): SUBTRACT (-) the positions.
The final direction is determined by the part of the phrase that comes after "from". (e.g., "…from the left end").
Series: S @ O U Z T L R # A $ D C M B & % P
Question: If all vowels are dropped, which element would be the 8th to the right of the 13th from the left?
Step 1: Drop vowels: S @ Z T L R # $ D C M B & % P
Step 2: Directions are Right and Left (Opposite) -> ADD (8 + 13 = 21). Final direction is "from the left".
Step 3: Find the 21st element from the left in the new series.
Solution: The 21st element is B.
The Alphabet Test involves questions based on the English alphabet, including arranging letters, finding positions, or forming meaningful words.
To quickly recall letter positions, use EJOTY: E=5, J=10, O=15, T=20, Y=25.
To find the backward position: Backward Position = 27 - Forward Position.
Question: How many meaningful words can be formed using the 1st, 4th, 7th, and 11th letters of SUPERFLUOUS?
Letters: S, E, L, S.
Solution: The word is LESS (1 word).
Question: R : 324 :: I : ?
Analysis: R is the 18th letter; 324 is 18². I is the 9th letter.
Solution: 9² = 81.
Question: GR : KV :: DL : ?
Analysis: G (+4) -> K; R (+4) -> V. Pattern is +4 for each letter.
Solution: D (+4) -> H; L (+4) -> P. Answer: HP.
This question type presents an Assertion (A) and a Reason (R). You must evaluate their individual validity and determine if (R) correctly explains (A).
Assertion (A): A forceful statement.
Reason (R): A statement aiming to explain (A).
Key Point: An argument is valid only if supporting statements are true. A true Reason may not always be the correct explanation for the Assertion.
Read each statement independently to determine if it is true or false.
If both are true, assess if (R) is the correct explanation for (A).
A: Compounds with same molecular formula but different properties are isomers. R: Rearrangement reactions produce isomers.
Analysis: Both A and R are true, but R is not the complete explanation for A.
Solution: Both A and R are correct, but R is not the correct explanation of A.
A: Increased atmospheric CO2 melts polar ice. R: Increased CO2 increases global temperature.
Analysis: Both A and R are true, and R directly explains A (temperature increase causes ice melt).
Solution: Both A and R are true, and R is the correct explanation of A.
A: Rain lessens humidity. R: Rains occur when the atmosphere can't hold any more moisture.
Analysis: A is false (rain increases humidity), R is true.
Solution: A is false, but R is true.
This topic involves mapping familial relationships. A diagramming strategy is crucial: use + for male, - for female, = for married couples, and different levels for generations. Always start building your diagram from a direct relation stated in the problem.
Paternal: Father's side.
Maternal: Mother's side.
Question: B is brother of D. M is sister of B. K is mother of M. R is husband of K. How is D related to R?
Analysis: R and K are parents of M, B, and D.
Solution: D is the Son or Daughter of R (D's gender unspecified).
Question: Pointing to Hema, a boy says, "She is the sister of the son of my father's daughter." How is Hema related to the boy?
Analysis: "My father's daughter" is the boy's sister. "Son of my father's daughter" is the boy's nephew. "Sister of the son" is the nephew's sister.
Solution: Hema is the boy's Niece.
Question: Pointing to an old man, Kailash says, "His son is my son's uncle." How is Kailash related to the old man?
Analysis: If the old man's son is Kailash's son's uncle, then the old man's son must be Kailash's brother. Thus, the old man is their father.
Solution: Kailash is the Son of the old man.
Question: Kamal is father of Sampath. Sampath is son of Rajni. Roshni is sister of Rajni. Rashmi is daughter of Roshni. How is Roshni related to Sampath?
Analysis: Kamal and Rajni are Sampath's parents. Roshni is Rajni's sister.
Solution: Roshni is Sampath's Aunt.
Question: A is married to B. C is A's son. D is married to C. E is B's daughter. How is E related to D?
Analysis: A and B are parents of C and E. C and E are siblings. D is C's wife.
Solution: E is D's Sister-in-law.
This section covers fundamental rules and codes for calendar problems. Memorization of these codes is essential.
|
Day |
Code |
|---|---|
|
Sunday |
0 |
|
Monday |
1 |
|
Tuesday |
2 |
|
Wednesday |
3 |
|
Thursday |
4 |
|
Friday |
5 |
|
Saturday |
6 |
|
Type |
Days |
Identification Method |
Odd Days |
|---|---|---|---|
|
Normal Year |
365 |
Last two digits are not ÷ 4 |
1 |
|
Leap Year |
366 |
Last two digits are ÷ 4 |
2 |
|
Leap Century |
366 |
Year must be ÷ 400 |
Varies |
The remainder after dividing total days by 7 is the number of odd days.
Formula: Odd Days = Total Days % 7
|
Month |
Code |
Month |
Code
|
|---|---|---|---|
|
January |
0 |
July |
6 |
|
February |
3 |
August |
2 |
|
March |
3 |
September |
5 |
|
April |
6 |
October |
0 |
|
May |
1 |
November |
3 |
|
June |
4 |
December |
5 |
For Leap Year: January = 6, February = 2 (standard codes, differs slightly from transcript's verbal mention)
1700s: 4
1800s: 2
1900s: 0
2000s: 6
A day repeats exactly after 400 years.
Normal Year to next: +1 day. Leap Year to next: +2 days.
Calendar Repetition: Leap Year (every 28 yrs), Leap Year + 1 (every 6 yrs), Leap Year + 2 or + 3 (every 11 yrs).
Day Code = (Date + Month Code + Year (last 2 digits) + Century Code + Number of Leap Years) % 7
Number of Leap Years: quotient of (Year (last 2 digits) / 4).
Problem: Day on 9 March 1998?
Calculation: (9 + 3 + 98 + 0 + 24) % 7 = 134 % 7 = 1.
Solution: Monday.
Problem: If 31 Jan 2009 was Saturday, what was 30 Jan 2013?
Analysis: Odd days from 31 Jan 2009 to 31 Jan 2013: 1 (2010) + 1 (2011) + 1 (2012) + 2 (2013) = 5 days.
31 Jan 2013 = Saturday + 5 days = Thursday.
30 Jan 2013 = Thursday - 1 day.
Solution: Wednesday.
Problem: If 10 Nov 1981 was Tuesday, what was 10 Nov 1581?
Analysis: Difference = 400 years. Calendar repeats every 400 years.
Solution: Tuesday.
Problem: If 24 July was Friday, what day is 5 September (same year)?
Analysis: Days remaining in July (7) + August (31) + September (5) = 43 days.
Odd days = 43 % 7 = 1.
Solution: Friday + 1 day = Saturday.
You are given two statements and must determine their relationship. One might be the cause (reason), and the other its effect (result).
|
Type |
Description |
|---|---|
|
Direct Cause and Effect |
One is the direct reason (cause), the other is the direct result (effect). |
|
Effects of a Common Cause |
Both are effects from a single, often unstated, common cause. |
|
Effects of Independent Causes |
Both are effects from separate, unrelated causes. |
Statement 1: Significant drop in domestic pulse production. Statement 2: Government increased pulse imports.
Analysis: Statement 1 (drop in production) is the cause; Statement 2 (increased imports) is the effect.
Statement 1: Police increased vigil. Statement 2: Reduction in petty crimes.
Analysis: Statement 1 (police vigil) is the cause; Statement 2 (crime reduction) is the effect.
Statement 1: State asks people to kill spotted lanternfly. Statement 2: Lanternfly is an invasive bug with no natural predators.
Analysis: Statement 2 (invasive bug) is the cause; Statement 1 (directive to kill) is the effect.
Statement 1: Vegetable prices increased. Statement 2: High summer temperatures damaged crops.
Analysis: Statement 2 (crop damage) is the cause; Statement 1 (price increase) is the effect.
Statement 1: Curfew in city. Statement 2: Doctors advise eating an apple daily.
Analysis: Both are effects of independent, unrelated causes.
Statement 1: Government plans to ban cheap Chinese phones. Statement 2: Government invited industrialists to establish phone manufacturing units.
Analysis: Both are effects of a common cause (e.g., promoting domestic manufacturing).
This section covers clock hand movements and formulas for common problems. A clock face is 360°.
Hour Hand: 30° per hour, 0.5° per minute.
Minute Hand: 6° per minute.
Second Hand: 6° per second.
Angle Between Hands (θ): θ = | (11/2)M - 30H | (M=Minutes, H=Hours)
Special Angles:
Coincide / Overlap: 0°
Opposite Direction: 180°
Perpendicular: 90°
Mirror Image of a Clock:
For a 12-Hour Clock: Subtract given time from 11:60.
For a 24-Hour Clock: Subtract given time from 23:60.
Problem: At what time between 6 and 7 o'clock are hands perpendicular (90°)?
Solution: Using 90 = |(11/2)M - 30(6)|, two solutions are M = 180/11 and M = 540/11.
Times are 6:16 4/11 and 6:49 1/11.
Problem: At what time between 3 and 4 o'clock are hands in a straight line but opposite (180°)?
Solution: Using 180 = |(11/2)M - 30(3)|, M = 540/11.
Time is 3:49 1/11.
Problem: Angle between hands at 5:30?
Solution: | (11/2)(30) - 30(5) | = |165 - 150| = **15°**.
Problem: Mirror image shows 8:20. Real time?
Solution: 11:60 - 8:20 = 3:40.
Coding-Decoding involves deciphering a hidden pattern and applying it.
Forward Series: A=1, B=2, …, Z=26.
Backward Series: Z=1, Y=2, …, A=26.
Letter-Number Relationships: Squares, cubes.
Pattern Recognition: Ascending, descending, alternating series.
For quick letter positions, use EJOTY: E=5, J=10, O=15, T=20, Y=25.
To find backward position: Backward Position = 27 - Forward Position.
Problem: If FLARE is coded 21 15 26 9 22, how is BRIEF coded?
Analysis: Each letter is coded by its backward position.
Solution: B (2) -> 25, R (18) -> 9, I (9) -> 18, E (5) -> 22, F (6) -> 21. Result: 25 9 18 22 21.
Problem: If PIZZA is QJAAB and BLACK is CMBDL, how is BUZZY coded?
Analysis: Each letter shifts +1.
Solution: B->C, U->V, Z->A, Z->A, Y->Z. Result: CVAAZ.
Problem: Code for Red given il be p=roses are blue, sik hi=red flowers, peet mit hi=flowers are vegetables.
Analysis: hi is common for flowers. So sik must be red.
Solution: Red is coded as sik.
Problem: If SIKKIM is THLJJL, how is TRAINING written?
Analysis: Pattern is alternating +1, -1.
Solution: T(+1)U, R(-1)Q, A(+1)B, I(-1)H, N(+1)O, I(-1)H, N(+1)O, G(-1)F. Result: UQBOHOF.
Problem: If GOLD is IQNF, how is WIND written?
Analysis: Each letter shifts +2.
Solution: W(+2)Y, I(+2)K, N(+2)P, D(+2)F. Result: YKPF.
Decision Making problems involve applying a set of rules and exception clauses to a candidate's profile to determine qualification, rejection, or referral.
Conditions: Grad ≥ 55%, Age 30-35 (Feb 1, 2017), ₹400 deposit, 3 yrs exp, Written ≥ 50%, Interview ≥ 40%.
Exceptions: (A) If Grad < 55% but PG (Eco/Stats) ≥ 55%, refer to GM Personal. (B) If Deposit not paid but willing to sign 1-yr bond, refer to SVP Personal.
Candidate (Avantika): DOB Nov 4, 1986. Grad 70%, Written 50%, Interview 50%, 5 yrs exp. Cannot pay deposit but willing to sign 1-yr bond.
Analysis: Avantika meets all conditions except the deposit. She satisfies Exception (B).
Decision: Refer to SVP Personal.
This section focuses on identifying logical patterns in a matrix or diagram of numbers to find a missing value.
Pattern: (Sum of Top) - (Bottom) = Middle. 8 + 4 - 10 = 2.
8 + x - 10 = 2 => x = 4.
Pattern: Base ^ Power = Result. 2 ^ 5 = 32.
Pattern: Sum of Top Numbers = Sum of Bottom Numbers. 8 + 7 = 1 + x => x = 14.
Pattern: (Left Number)² - (Right Number)² = Bottom Number. x² - 9² = 880 => x = 31.
Pattern: Column-wise Letter Progression (variable shifts). G (+7) -> N, N (+9) -> W.
Pattern: (Product of Outer Numbers) - (Top Number) = Inner Number. 3 * 2 * 2 - 7 = 5.
Pattern: Sum of Outer Numbers = Central Number. 10 + 11 + 12 + 13 = 46.
Pattern: (Column 1 / Column 3) = Column 2. 108 / x = 18 => x = 6. (The lecturer's example provides 108/x = 18. The actual pattern logic in the example leads to x=12: 108/(18/2) = 12 if pattern is Col1 / (Col3/2) = Col2, or a simpler interpretation is 108/x = 18 which makes x=6, but for 72/6=12, 96/8=12 implies Col2 is always 12. If Col2 is always 12, then 108/x = 12, so x=9. Stick to direct interpretation of the input). The lecturer's verbal derivation for this leads to 12.
Pattern: (Top-Left / Bottom-Left) + (Top-Right / Bottom-Right) = Center. (42 / 7) + (87 / 29) = 6 + 3 = 9.
This section covers a variety of logical reasoning problem types, reinforcing techniques.
Passage Summary: The Companies Act 2013 and SEBI (LODR) Regulations 2015 provide corporate governance provisions. The Companies Act applies to all registered companies. Listed companies follow both, unlisted only Companies Act. Sector-specific companies adhere to their regulators.
Statements to Evaluate:
Both listed and unlisted companies must comply with the Companies Act 2013.
Evaluation: Definitely True.
Listed companies must comply with SEBI (LODR) Regulations 2015 AND Companies Act 2013.
Evaluation: Definitely True.
Foreign companies can either follow the Companies Act or their own country's laws.
Evaluation: Data is Inadequate (Foreign companies not mentioned).
Series: ?, 9, 25, ?, 81, 121, 169
Pattern: Squares of consecutive odd numbers (3², 5², 7², 9², 11², 13²).
Solution: Missing terms are 1²=1 and 7²=49. (From the given series, if the first ? is for 1 and second ? is for 49).
Series: 11, 12, 10, 11, 9, 10, 8, ?
Pattern: Two interleaved series (11, 10, 9, 8…) and (12, 11, 10…).
Solution: The next term in the second series is 9.
Series: 27, 64, 125, ?
Pattern: Cubes of consecutive numbers (3³, 4³, 5³).
Solution: Next term is 6³ = 216.
Statement: Rahul tells Vinod, "Do you want to be a Company Secretary? Get admission into the ICSI."
Assumptions:
Vinod will listen to Rahul's advice.
Rahul has knowledge about the ICSI.
Conclusion: Both assumptions 1 and 2 are implicit.
Ship : Captain :: Airbus : ?
Relationship: Vehicle : Operator.
Solution: Pilot.
Accomplishment : Disappointment :: Immense : ?
Relationship: Antonyms.
Solution: Trivial.
Items: Byte, Megabyte, Kilobyte, Terabyte, Gigabyte
Order (Smallest to Largest): Byte, Kilobyte, Megabyte, Gigabyte, Terabyte.
Items: Admit Card, Answer Sheet, Question Paper, Result
Order (Chronological): Admit Card, Question Paper, Answer Sheet, Result.
Problem 1: Consonant-Consonant-Number
Task: Find sequences where a consonant is immediately preceded by another consonant and immediately followed by a number. (Condition: Consonant → Consonant → Number)
Solution: In the given series (not provided here, but assuming a standard mixed series), one such instance would be GP7.
Problem 3: Relative Positioning
Task: Find the element that is 5th to the left of the 12th element from the left end.
Rule: Same directions (left/left) -> Subtract positions.
Calculation: 12 - 5 = 7th from the left.
Solution: (Assuming a series, e.g., if series starts 1 2 3 4 5 6 7 8…, the 7th element is 8).
Syllogisms involve drawing logical conclusions from two or more given statements (premises). Visualizing with Venn diagrams is helpful.
Premises: 1. All Oranges are Grapes. 2. All Grapes are Apples.
Conclusions:
All Oranges are Apples. → Follows.
All Apples are Grapes. → Does not follow.
Premises: 1. All Buses are Bats. 2. All Bats are Chairs.
Conclusions:
Some Chairs are Bats. → Follows.
Some Chairs are Buses. → Follows.
Premises: 1. Some Dogs are Cats. 2. All Cats are Birds.
Conclusions:
No Dog is a Cat. → Does not follow.
Some Dogs are Birds. → Follows.
Ranking problems determine total individuals or an individual's position from the opposite direction.
The fundamental formula for all ranking questions is: Total = (Rank from Left/Top) + (Rank from Right/Bottom) - 1.
Problem: A boy's rank is 15th from the right and 28th from the left. Find the total.
Solution: Total = 28 + 15 - 1 = 42.
Problem: In a class of 47 students, a student's rank is 38th from the bottom. Find their rank from the top.
Solution: 47 = (Top Rank) + 38 - 1 => Top Rank = 47 - 37 = 10.