NCERT Solutions for Class 10 Maths Chapter 6 Exercise 6.5: Chapter 6 of Class 10 Maths, "Triangles," concludes with Exercise 6.5, which focuses on applying the concepts of similarity and the Pythagoras Theorem to solve higher-order problems. This exercise involves practical questions that test a student's ability to prove geometric properties, calculate unknown lengths, and apply proportionality principles in various scenarios.
It strengthens understanding of key theorems, such as the Basic Proportionality Theorem and similarity criteria, in real-world contexts. Exercise 6.5 challenges students to think critically and apply learned concepts creatively, making it an essential part of mastering geometry and preparing for both board exams and competitive tests.CBSE Class 10 Previous Year Question Papers
Important Questions for Class 10 Maths Chapter 6
By tackling these problems, students enhance their logical reasoning, analytical thinking, and problem-solving skills. These solutions play a crucial role in board exam preparation and lay the groundwork for higher studies in mathematics and fields like engineering, physics, and architecture, making them indispensable for both academic and practical learning.CBSE Class 10 Maths Sample Paper 2024-25
NCERT Solutions for Class 10 Maths Chapter 6 Exercise 6.5 PDF
1. Sides of 4 triangles are given below. Determine which of them are right triangles. In the case of a right triangle, write the length of its hypotenuse.
(i) 7 cm, 24 cm, 25 cm (ii) 3 cm, 8 cm, 6 cm (iii) 50 cm, 80 cm, 100 cm (iv) 13 cm, 12 cm, 5 cm
Solution:
(i) Given, the sides of the triangle are 7 cm, 24 cm, and 25 cm.
Squaring the lengths of the sides of the, we will get 49, 576, and 625. 49 + 576 = 625 (7) 2 + (24) 2 = (25) 2 Therefore, the above equation satisfies Pythagoras theorem. Hence, it is a right-angled triangle. Length of Hypotenuse = 25 cm(ii) Given, the sides of the triangle are 3 cm, 8 cm, and 6 cm.
Squaring the lengths of these sides, we will get 9, 64, and 36. Clearly, 9 + 36 ≠ 64 Or, 3 2 + 6 2 ≠ 8 2 Therefore, the sum of the squares of the lengths of two sides is not equal to the square of the length of the hypotenuse. Hence, the given triangle does not satisfy Pythagoras theorem.(iii) Given, the sides of triangle’s are 50 cm, 80 cm, and 100 cm.
Squaring the lengths of these sides, we will get 2500, 6400, and 10000. However, 2500 + 6400 ≠ 10000 Or, 50 2 + 80 2 ≠ 100 2 As you can see, the sum of the squares of the lengths of two sides is not equal to the square of the length of the third side. Therefore, the given triangle does not satisfy Pythagoras theorem. Hence, it is not a right triangle.(iv) Given, the sides are 13 cm, 12 cm, and 5 cm.
Squaring the lengths of these sides, we will get 169, 144, and 25. Thus, 144 +25 = 169 Or, 12 2 + 5 2 = 13 2 The sides of the given triangle satisfy Pythagoras theorem. Therefore, it is a right triangle. Hence, the length of the hypotenuse of this triangle is 13 cm.2. PQR is a triangle right angled at P, and M is a point on QR such that PM ⊥ QR. Show that PM 2 = QM × MR.
Solution:
Given, ΔPQR is right angled at P is a point on QR such that PM ⊥QR3. In Figure, ABD is a triangle right angled at A and AC ⊥ BD. Show that (i) AB 2 = BC × BD (ii) AC 2 = BC × DC (iii) AD 2 = BD × CD
Solution:
(i) In ΔADB and ΔCAB, ∠DAB = ∠ACB (Each 90°) ∠ABD = ∠CBA (Common angles) ∴ ΔADB ~ ΔCAB [AA similarity criterion] ⇒ AB/CB = BD/AB ⇒ AB 2 = CB × BD (ii) Let ∠CAB = x In ΔCBA, ∠CBA = 180° – 90° – x ∠CBA = 90° – x Similarly, in ΔCAD ∠CAD = 90° – ∠CBA = 90° – x ∠CDA = 180° – 90° – (90° – x) ∠CDA = x In ΔCBA and ΔCAD, we have ∠CBA = ∠CAD ∠CAB = ∠CDA ∠ACB = ∠DCA (Each 90°) ∴ ΔCBA ~ ΔCAD [AAA similarity criterion] ⇒ AC/DC = BC/AC ⇒ AC 2 = DC × BC (iii) In ΔDCA and ΔDAB, ∠DCA = ∠DAB (Each 90°) ∠CDA = ∠ADB (common angles) ∴ ΔDCA ~ ΔDAB [AA similarity criterion] ⇒ DC/DA = DA/DA ⇒ AD 2 = BD × CD4. ABC is an isosceles triangle right angled at C. Prove that AB 2 = 2AC 2 .
Solution:
Given, ΔABC is an isosceles triangle right angled at C.5. ABC is an isosceles triangle with AC = BC. If AB 2 = 2AC 2 , prove that ABC is a right triangle.
Solution:
Given, ΔABC is an isosceles triangle having AC = BC and AB 2 = 2AC 26. ABC is an equilateral triangle of side 2a. Find each of its altitudes .
Solution:
Given, ABC is an equilateral triangle of side 2a.7. Prove that the sum of the squares of the sides of the rhombus is equal to the sum of the squares of its diagonals.
Solution:
Given, ABCD is a rhombus whose diagonals AC and BD intersect at O.8. In Fig. 6.54, O is a point in the interior of a triangle.
ABC, OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Show that: (i) OA 2 + OB 2 + OC 2 – OD 2 – OE 2 – OF 2 = AF 2 + BD 2 + CE 2 , (ii) AF 2 + BD 2 + CE 2 = AE 2 + CD 2 + BF 2 .
Solution:
Given, in ΔABC, O is a point in the interior of a triangle. And OD ⊥ BC, OE ⊥ AC and OF ⊥ AB. Join OA, OB and OC9. A ladder 10 m long reaches a window 8 m above the ground. Find the distance between the foot of the ladder from the base of the wall.
Solution:
Given, a ladder 10 m long reaches a window 8 m above the ground.10. A guy-wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
Solution:
Given, a guy-wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end.11. An aeroplane leaves an airport and flies due north at a speed of 1,000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1,200 km per hour. How far apart will be the two planes after
Solution:
Given, Speed of first aeroplane = 1000 km/hr Distance covered by the first aeroplane flying due north in12. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.
Solution:
Given, Two poles of heights 6 m and 11 m stand on a plane ground. And the distance between the feet of the poles is 12 m.13. D and E are points on the sides CA and CB, respectively, of a triangle ABC right angled at C. Prove that AE 2 + BD 2 = AB 2 + DE 2 .
Solution:
Given, D and E are points on the sides CA and CB, respectively, of a triangle ABC right angled at C.14. The perpendicular from A on side BC of a Δ ABC intersects BC at D such that DB = 3CD (see figure). Prove that 2AB 2 = 2AC 2 + BC 2 .
Solution:
Given, the perpendicular from A on side BC of a Δ ABC intersects BC at D such that; DB = 3CD. In Δ ABC, AD ⊥BC and BD = 3CD In right angle triangle, ADB and ADC, by Pythagoras theorem, AB 2 = AD 2 + BD 2 ………………………. (i) AC 2 = AD 2 + DC 2 …………………………….. (ii) Subtracting equation (ii) from equation (i) , we get AB 2 – AC 2 = BD 2 – DC 2 = 9CD 2 – CD 2 [Since, BD = 3CD] = 8CD 2 = 8(BC/4) 2 [Since, BC = DB + CD = 3CD + CD = 4CD] Therefore, AB 2 – AC 2 = BC 2 /2 ⇒ 2(AB 2 – AC 2 ) = BC 2 ⇒ 2AB 2 – 2AC 2 = BC 2 ∴ 2AB 2 = 2AC 2 + BC 2 .15. In an equilateral triangle, ABC, D is a point on side BC such that BD = 1/3BC. Prove that 9AD 2 = 7AB 2 .
Solution:
Given, ABC is an equilateral triangle. And D is a point on side BC such that BD = 1/3BC.Solution:
Given, an equilateral triangle, say ABC,17. Tick the correct answer and justify: In ΔABC, AB = 6√3 cm, AC = 12 cm and BC = 6 cm. The angle B is: (A) 120°
(B) 60° (C) 90°
(D) 45°
Solution:
Given, in ΔABC, AB = 6√3 cm, AC = 12 cm and BC = 6 cm.Conceptual Understanding : Simplifies complex topics like triangle similarity and Pythagoras Theorem with detailed explanations.
Step-by-Step Solutions : Provides clear, logical solutions, making it easier for students to follow and learn problem-solving techniques.
Exam-Oriented : Focuses on key concepts frequently asked in board exams, boosting preparation and confidence.
Critical Thinking : Enhances logical reasoning and analytical skills through challenging problems.
Competitive Exam Ready : Builds a solid foundation for higher studies and exams.
Time-Saving : Offers structured solutions, saving students time during revisions.