

RS Aggarwal Solutions for Class 10 Maths Chapter 16 Exercise 16.1: RS Aggarwal Solutions for Class 10 Maths Chapter 16 Co-ordinate Geometry Exercise 16.1 provide detailed explanations and step-by-step solutions to help students understand the fundamentals of coordinate geometry.
This exercise focuses on the basics of plotting points on the Cartesian plane, understanding the concepts of the x-axis and y-axis, and calculating the distance between two points using the distance formula.RS Aggarwal Solutions for Class 10 Maths Chapter 16 Exercise 16.1 PDF
Q. Find the distance between the points :
(i) A(9, 3) and B (15, 11) (ii) A (7, -4) and B(-5, 1)
(iii) A(-6, -4) and B(9, -12) (iv) A (1, -3 ) and B (4, -6)
(v) P (a+b, a-b) and Q (a-b, a+b)
(vi) P (a sin α, a cos α) and Q (a cos α, - a sin α)
(i) A(5, -12) (ii) B (-5, 5) (iii) C (-4, -6).
(i) The distance of point (5,-12) from the origin is
Origin (0,0) point (5,-12) √[5²+(-12)²] = √25+144 = √169=13(ii) origin (0,0)
point (-5,5) √(25+25)=√50=5√2(iii) origin (0,0)
point (-4,-6) √16+36=√52=2√13 Q. Find all possible values of y for which the distance between the pointsA (2, -3) and B (10, y) is 10 units.
Q. Find the values of x for which the distance between the points P(x, 4) and Q(9, 10) is 10 units.
→ ( P Q ) 2 = ( 10 ) 2 u n i t s = 100 u n i t s ⇒ 9 – x 2 + 10 – 4 2 = 100 ⇒ 81–x2–18\timesx+36=100 → 81 – x 2 – 18 × x + 36 = 100 → x 2 – ( 18 × x ) + 17 = 0 →(x–1)(x–17)=0 →x=1orx=17 Hence the value of x is either 1 or 17.
Q. Find the coordinates of the point on x-axis which is equidistant from the points (-2, 5) and (2, -3).
Q. Find points on the x-axis, each of which is at a distance of 10 units from the point A(11, -8).
Q. Find the point on the y-axis which is equidistant from the points A(6, 5) and B(-4, 3).
Q. If the point P(x, y) is equidistant from the points A(5, 1) and B(-1, 5) prove that 3x = 2y.
If P is equidistant from point A and B then,AP:PB=1:1 Distance AP = √ ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 = √ ( x − 5 ) 2 + ( y − 1 ) 2 A P 2 = x 2 + 25 − 10 x + y 2 + 1 − 2 y A P 2 = x 2 + y 2 + 26 − 10 x − 2 y Distance B P = √ ( − 1 − x ) 2 + ( 5 − y ) 2 B P 2 = 1 + x 2 + 2 x + 25 + y 2 − 10 y B P 2 = 26 + x 2 + y 2 + 2 x − 10 y Since P is the midpoint. A P 2 = B P 2 x 2 + y 2 + 26 − 10 x − 2 y = x 2 + y 2 + 2 x − 10 y + 26 x 2 − x 2 + y 2 − y 2 + 26 − 26 − 10 x + 2 x = − 10 y + 2 y − 12 x = − 8 y − 3 x = − 2 y 3 x = 2 y hence proved
Q. Find the coordinates of the point equidistant from three given points A(5, 3), B(5, -5) and C(1, -5).
Q. If the point C(-2, 3) is equidistant from the points A(3, -1) and B(x, 8), find the values of x. Also, find the distance BC.
Q. (i) If the point P(2, 2) is equidistant from the points (a+b, b-a) and (a-b, a+b), prove that bx = ay. (ii) If the distances of P(x, y) from A(5, 1) and B (-1, 5) are equal then prove that 3x = 2y.
(i)
Distance between the points (x, y) and (a+b, b-a) & (a-b, a+b) is equal ⇒ √ [ x − ( a + b ) ] 2 + [ y − ( b − a ) ] 2 = √ [ x − ( a − b ) ] 2 + [ y − ( a + b ) ] 2 ⇒ x 2 + ( a + b ) 2 − 2 x ( a + b ) + y 2 + ( b − a ) 2 − 2 y ( b − a ) = x 2 + ( a − b ) 2 − 2 x ( a − b ) + y 2 + ( a + b ) 2 − 2 y ( a + b ) ⇒ − 2 a x − 2 b x − 2 b y + 2 a y = − 2 a x + 2 b x − 2 a y − 2 b y ⇒ a y − b x = b x − a y ⇒ 2 a y = 2 b x ⇒ b x = a y(ii)
It is given that P is equidistant from A and B. So, PA = PB Using distance formula,(i) (1, -1), (5, 2) and 9, 5 (ii) (6, 9), (0, 1) and (-6, -7)
(iii) (-1, -1), (2, 3) and (8, 11) (iv) (-2, 5), (0, 1) and (2, 3).
Q. Show that the points (-3 , 3), (3, 3) and ( − 3 √ 3 , 3 √ 3 ) are the vertices of an equilateral triangle.
(a) 2 (b) 4 (c) -4 (d) − 5 2
(a) 13 (b) 26 (c) 169 (d) 238
Median AD of the triangle will divide the side BC in two equal parts. Therefore, D is the mid-point of side BC. D(x,y) = {(6+1)/2 , (5+4)/2} = {7/2 ,9/2} (c) (7/2,9/2) is correct answer
