Important Questions for Class 11 Maths Chapter 3: Important Questions for Class 11 Maths Chapter 3 Trigonometric Functions are created to help students grasp the core concepts of trigonometry which is important for advanced mathematical problem-solving.
Solving these questions helps students build a strong foundation in trigonometry, making it easier to tackle more complex questions in exams and other mathematical applications. By working through these problems, students can reinforce their knowledge enhance their problem-solving skills and gain confidence in approaching this critical chapter.Important Questions for Class 11 Maths Chapter 3 PDF
Q. No.1: In any triangle ABC, prove that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.
Solution:
In any triangle ABC, a/sin A = b/sin B = c/sin C = k a = k sin A, b = k sin B, c = k sin C LHS = a sin (B – C) + b sin (C – A) + c sin (A – B) = k sin A [sin B cos C – cos B sin C] + k sin B [sin C cos A – cos C sin A] + k sin C [sin A cos B – cos A sin B] = k sin A sin B cos C – k sin A cos B sin C + k sin B sin C cos A – k sin B cos C sin A + k sin C sin A cos B – k sin C cos A sin B = 0 = RHS Hence proved that a sin (B – C) + b sin (C – A) + c sin (A – B) = 0.Q.No.2: Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use π = 22/7).
Solution:
Given, Length of the arc = l = 37.4 cm Central angle = θ = 60° = 60π/180 radian = π/3 radians We know that, r = l/θ = (37.4) * (π / 3) = (37.4) / [22 / 7 * 3] = 35.7 cm Hence, the radius of the circle is 35.7 cm.Q. No.3: A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
Solution:
Given, Number of revolutions made by the wheel in 1 minute = 360 1 minute = 60 seconds Number of revolutions in 1 second = 360/60 = 6 Angle made in 1 revolution = 360° Angles made in 6 revolutions = 6 × 360° Radian measure of the angle in 6 revolutions = 6 × 360 × π/180 = 6 × 2 × π = 12π Hence, the wheel turns 12π radians in one second.Q. No. 4: Find the value of √3 cosec 20° – sec 20°.
Solution:
√3 cosec 20° – sec 20°Q. No. 5: Show that tan 3x tan 2x tan x = tan 3x – tan 2x – tan x.
Solution:
Let 3x = 2x + x Taking “tan” on both sides, tan 3x = tan (2x + x) We know that,Q. No. 6: Prove that:
Solution:
LHSQ. No. 7: Find the value of cos 570° sin 510° + sin (-330°) cos (-390°).
Solution:
LHS =cos (570)sin (510) + sin (- 330)cos (- 390) = cos (570) sin (510) + [ – sin (330) ]cos (390) [ because sin( – x ) = – sin x and cos( – x ) = cos x ] = cos (570)sin(510) – sin (330) = cos (90 * 6 + 30) sin (90 * 5 + 60) – sin (90 * 3 + 60) cos (90 * 4 + 30) = – cos (30) cos (60) – [ – cos (60) ] cos (30) = – cos (30) cos (60) + cos (30) sin (60) = 0Q. No. 8: Find the general solution of the following equation.
Solution:
Given,Q. No. 9: Show that 2 sin 2 β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α.
Solution:
LHS = 2 sin 2 β + 4 cos (α + β) sin α sin β + cos 2(α + β) = 2 sin 2 β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β) = 2 sin 2 β + 4 sin α cos α sin β cos β – 4 sin 2 α sin 2 β + cos 2α cos 2β – sin 2α sin 2β = 2 sin 2 β + sin 2α sin 2β – 4 sin 2 α sin 2 β + cos 2α cos 2β – sin 2α sin 2β = (1 – cos 2β) – (2 sin 2 α) (2 sin 2 β) + cos 2α cos 2β = (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β = cos 2α = RHS Therefore, 2 sin 2 β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2αQ. No. 10: Prove that:
Solution:
LHS=(sec 8θ -1 )/ (sec4θ -1) =(1/(cos8θ) -1 )/ (1/(cos4θ) -1) =((1-cos8θ)cos4θ )/ ((1-cos4θ) cos8θ) =(2sin 2 4θcos4θ )/ ((2sin 2 2θ) cos8θ) =(2sin4θcos4θsin4θ )/ ((2sin 2 2θ) cos8θ) =(sin8θ * 2sin2θcos2θ )/ ((2sin 2 2θ) cos8θ) =(tan8θ * cos2θ )/ (sin2θ) = (tan8θ) /(tan 2θ) = RHS Hence proved.