
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4: NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 provide a detailed understanding of the application of trigonometric identities to solve various problems.
These solutions are created to help students develop a strong foundation in trigonometry, enabling them to approach problems systematically. By practicing these solutions students can enhance their problem-solving skills and prepare effectively for their board exams.CBSE Class 10 Maths Sample Paper 2024-25
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 PDF
Solve the followings Questions.
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
2. Write all the other trigonometric ratios of ∠A in terms of sec A.
Answer:
3. Evaluate :
(i) (sin
2
63° + sin
2
27°)/(cos
2
17° + cos
2
73°)
(ii) sin 25° cos 65° + cos 25° sin 65°
Answer:
(i) (sin 2 63° + sin 2 27°)/(cos 2 17° + cos 2 73°)
(ii) sin 25° cos 65° + cos 25° sin 65°
Choose the correct option. Justify your choice.
4. (i) 9 sec 2 A - 9 tan 2 A = (A) 1 (B) 9 (C) 8 (D) 0 (ii) (1 + tan θ + sec θ) (1 + cot θ - cosec θ) (A) 0 (B) 1 (C) 2 (D) - 1 (iii) (secA + tanA) (1 - sinA) = (A) secA (B) sinA (C) cosecA (D) cosA (iv) 1+tan 2 A/1+cot 2 A = (A) sec 2 A (B) -1 (C) cot 2 A (D) tan 2 AAnswer:
(i) (i) 9 sec 2 A - 9 tan 2 A = (A) 1 (B) 9 (C) 8 (D) 0
(ii) (1 + tan θ + sec θ) (1 + cot θ - cosec θ)
(A) 0 (B) 1 (C) 2 (D) - 1
(iii) (secA + tanA) (1 - sinA) =
(A) secA (B) sinA (C) cosecA (D) cosA
(iv) 1+tan
2
A/1+cot
2
A =
(A) sec
2
A (B) -1 (C) cot
2
A (D) tan
2
A
5. Prove the following identities, where the angles involved are acute angles for which the
expressions are defined.
(i) (cosec θ - cot θ)
2
= (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin
2
A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec
2
A = 1+cot
2
A.
(vi) √1 + sin A/1 - sin A = sec A+ tan A
(vii) (sin θ - 2sin
3
θ)/(2cos
3
θ-cos θ) = tan θ
(viii) (sin A + cosec A)
2
+ (cos A + sec A)
2
= 7+tan
2
A+cot
2
A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan
2
A/1+cot
2
A) = (1-tan A/1-cot A)
2
= tan
2
A
Answer:
(i) (cosec θ - cot θ) 2 = (1-cos θ)/(1+cos θ)
(ii) cos A/(1+sin A) + (1+sin A)/cos A = 2 sec A
(iii) tan θ/(1-cot θ) + cot θ/(1-tan θ) = 1 + sec θ cosec θ
[Hint : Write the expression in terms of sin θ and cos θ]
(iv) (1 + sec A)/sec A = sin
2
A/(1-cos A)
[Hint : Simplify LHS and RHS separately]
(v) (cos A–sin A+1)/(cos A+sin A–1) = cosec A + cot A,using the identity cosec
2
A = 1+cot
2
A
(vi) √1 + sin A/1 - sin A = sec A+ tan A
LHS = 1 + sin A/(1 - sin A) .....(1) Multiplying and dividing by (1 + sin A) ⇒ (1 + sin A)(1 + sin A/1 - sin A)(1 + sin A) = (1 + sin A)²/(1 - sin² A) [a² - b² = (a - b)(a + b)] = (1 + sinA)/1 - sin² A = 1 + sin A/cos² A = 1 + sin A/cos A = 1/cos A + sin A/cos A = sec A + tan A = R.H.S (vii) (sin θ - 2sin 3 θ)/(2cos 3 θ-cos θ) = tan θ
(viii) (sin A + cosec A)
2
+ (cos A + sec A)
2
= 7+tan
2
A+cot
2
A
(ix) (cosec A – sin A)(sec A – cos A) = 1/(tan A+cotA)
[Hint : Simplify LHS and RHS separately]
(x) (1+tan
2
A/1+cot
2
A) = (1-tan A/1-cot A)
2
= tan
2
A
