JEE Main Organic Chemistry Syllabus 2025
|
Units
|
Topics
|
Purification and Characterization of Organic Compounds
|
Purification-Crystallization, sublimation, distillation, differential extraction and chromatography-principles and their applications.
Qualitative analysis-Detection of nitrogen, sulphur, phosphorus and halogens.
Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen, halogens, sulphur, phosphorus. Calculations of empirical formulae and molecular formulae: Numerical problems in organic quantitative analysis,
|
Some Basic Principles of Organic Chemistry
|
Tetravalency of carbon: Shapes of simple molecules – hybridization (s and p): Classification of organic compounds based on functional groups: and those containing halogens, oxygen, nitrogen and sulphur; Homologous series: Isomerism – structural and stereoisomerism. Nomenclature (Trivial and IUPAC) Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations and carbanions; stability of carbocations and free radicals, electrophiles and nucleophiles. Electronic displacement in a covalent bond – Inductive effect, electromeric effect, resonance and hyperconjugation. Common types of organic reactions Substitution, addition, elimination and rearrangement.
|
Hydrocarbons
|
Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties and reactions.
Alkanes: Conformations: Sawhorse and Newman projections (of ethane): Mechanism of halogenation of alkanes.
Alkenes: Geometrical isomerism: Mechanism of electrophilic addition: addition of hydrogen, halogens, water, hydrogen halides (Markownikoffs and peroxide effect): Ozonolysis and polymerization.
Alkynes: Acidic character: Addition of hydrogen, halogens, water and hydrogen halides: Polymerization.
Aromatic hydrocarbons: Nomenclature, benzene – structure and aromaticity: Mechanism of electrophilic substitution: halogenation, nitration.
Friedel – Craft’s alkylation and acylation, directive influence of the functional group in mono-substituted benzene.
|
Organic Compounds containing Halogens
|
General methods of preparation, properties and reactions; Nature of C-X bond; Mechanisms of substitution reactions. Uses; Environmental effects of chloroform, iodoform freons and DDT.
|
Organic Compounds containing Oxygen
|
General methods of preparation, properties, reactions and uses. ALCOHOLS, PHENOLS AND ETHERS Alcohols: Identification of primary, secondary and tertiary alcohols: mechanism of dehydration. Phenols: Acidic nature, electrophilic substitution reactions: halogenation. nitration and sulphonation. Reimer – Tiemann reaction. Ethers: Structure. Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group, relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic addition reactions (addition of HCN. NH3, and its derivatives), Grignard reagent; oxidation: reduction (Wolf Kishner and Clemmensen); the acidity of -hydrogen. aldol condensation, Cannizzaro reaction. Haloform reaction, Chemical tests to distinguish between aldehydes and Ketones. Carboxylic Acids Acidic strength and factors affecting it
|
Organic Compounds containing Nitrogen
|
General methods of preparation. Properties, reactions and uses. Amines: Nomenclature, classification structure, basic character and identification of primary, secondary and tertiary amines and their basic character. Diazonium Salts: Importance in synthetic organic chemistry.
|
Polymers
|
General introduction and classification of polymers, general methods of polymerization, – Addition and condensation, copolymerization. Natural and synthetic, rubber and vulcanization, some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.
|
Biomolecules
|
General introduction and classification of polymers, general methods of polymerization, – Addition and condensation, copolymerization. Natural and synthetic, rubber and vulcanization, some important polymers with emphasis on their monomers and uses – polythene, nylon, polyester and bakelite.
PROTEINS: Elementary Idea of -amino acids, peptide bond, polypeptides. Proteins: primary, secondary, tertiary and quaternary structure (qualitative idea only), denaturation of proteins, enzymes.
VITAMINS: Classification and functions.
Nucleic Acids: Chemical constitution of DNA and RNA. Biological functions of nucleic acids.
|
Chemistry in Everyday Life
|
Chemicals in Medicines – Analgesics, tranquillizers, antiseptics, disinfectants, antimicrobials, anti-fertility drugs, antibiotics, antacids. Anti-histamines – their meaning and common examples. Chemicals in food – Preservatives, artificial sweetening agents – common examples. Cleansing Agents – Soaps and detergents, cleansing action
|
Principles Related to Practical Chemistry
|
Detection of extra elements (Nitrogen, Sulphur, halogens) in organic compounds; Detection of the following functional groups; hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketones) carboxyl and amino groups in organic compounds.
The chemistry involved in the preparation of the following: Inorganic compounds;
Mohr’s salt, potash alum.
Organic compounds: Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.
The chemistry involved in the titrimetric exercises – Acids, bases and the use of indicators, oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4
Chemical principles involved in the qualitative salt analysts: Cations – Pb2+, Cu2+, Al3+, Fe3+, Zn2+, Ni2+ , Ca2+, Ba2+, Mg2+ , NH4 + Anions- CO3 2−, S 2- ,SO4 2−, NO3- , NO2- , Cl- , Br- , I- ( Insoluble salts excluded). Chemical principles involved in the following experiments: 1. Enthalpy of solution of CuSO4 2. Enthalpy of neutralization of strong acid and strong base. 3. Preparation of lyophilic and lyophobic sols. 4. Kinetic study of the reaction of iodide ion with hydrog
|