Physics Wallah

Motion In One Dimension

Share

Share

Motion In One Dimension

Kinematics of Class 11

Displacement

The displacement of a particle is defined as the difference between its final position and its initial position. We represent the displacement as Δx.

Δx = xf− xi

The subscripts iand f refer to be initialand final positions. These are not necessarily the positions from which the particle starts its motion nor where its motion ceases. The i and f designate the particular initial and final positions we are considering out of the entire motion of the object. Notethe order : final position minus initial position . Whenever we calculate “delta” anywhere, we always take the final value minus the initial value.

Average Velocity and Average Speed

The average velocity of an object travelling along the x−axis is defined as the ratio of its displacement to the time taken for that displacement.

vav= Motion In One Dimension (7.1)

The average speed of a particle is defined as the ratio of the total distance travelled to the time taken.

Average speed = Total distance travelled/Δt

Note that velocity and speed have different meanings.

Example : 7.1

A bird flies toward east at 10 m/s for 100 m. It then turns around and flies at 20 m/s for 15 s. Find

(a) its average speed

(b) its average velocity

Solution

Let us take the xaxis to point east. A sketch of the path is shown in the figure. To find the required quantities, we need the total time interval. The first part of the journey took Δt1= (100 m)/ (10 m/s) = 10 s, and we are given Δt2= 15 s for the second part. Hence the total time interval is

Motion In One Dimension

Δt= Δt 1 + Δt 2 = 25 s

The bird flies 100 m east and then (20 m/s) (15 s) = 300 m west

(a)Average speed = Distance/Δt = 100m + 300 m/25s = 16m/s

(b)The net displacement is

Δx= Δx 1 + Δx 2 = 100 m − 300 m = −200 m

So that

vav= Δx/Δt = -200m/25s = -8  m/s

The negative sign means that vavis directed toward the west.


CAUTION

Sometimes students try to calculate the average velocity by just adding the two given velocities and dividing by two. This procedure is wrong, and it can be clearly illustrated with the following example. A college student drives a car 1 kilometer at 30 kmph. How fast must the student drive a second kilometer in order to average 60 kmph for the 2 minute trip.


If you believe that the average velocity is the average of the velocities, then the answer will be 90 kmph because 30 + 90/2 = 60 kmph. But the correct answer is “not possible”. There is no way the student can get average 60 kmph for the trip! Sixty kmph means 1 km/min. In order to average 60 kmph for 2 km, the trip must be driven in 2 min. But going the first kilometer at 30 kmph takes 2 min. So the driver has no time left at all to go the second kilometer.

Example: 7.2

A jogger runs his first 100 m at 4 m/s and the second 100 m at 2 m/s in the same direction. What is the average velocity ?

Solution

A sketch of his motion is shown in figure. His net displacement

Δx= Δx 1 + Δx 2

= 100 m + 100 m = 200 m

Motion In One Dimension

The first half took

Δt1= (100 m)/(4 m/s) = 25 s,

while the second took

Δt1= (100 m)/(2 m/s) = 50 s,

The total time interval is

Δt= Δt 1 + Δt 2 = 75 s

Therefore, his average velocity is

vav= Δx/Δt = 200m/75s = 2.67 m/s

Since 2.67 ≠ 1/2 (4+2), we see that the average velocity is not, in general, equal to the average of the velocities.

Average Acceleration is defined as the ratio of the change in velocity to the time taken.

a av = Motion In One Dimension (7.2)

Instantaneous Velocity is defined as the value approached by the average velocity when the time interval for measurement becomes closer and closer to zero, i.e. Δt → 0. Mathematically

v(t) = Motion In One Dimension

The instantaneous velocity function is the derivative with respect to the time of the displacement function.

v(t)= Motion In One Dimension (7.3)

Instantaneous Acceleration is defined analogous to the method for defining instantaneous velocity. That is, instantaneous acceleration is the value approached by the average acceleration as the time interval for the measurement becomes closer and closer to zero.

The Instantaneous acceleration function is the derivative with respect to time of the velocity function

a(t)= Motion In One Dimension (7.4)

Example: 7.3

The position of a particle is given by

x= 40 − 5t− 5t 2 , where x is in metre and t is in second

(a) Find the average velocity between 1 s and 2 s

(b) Find its instantaneous velocity at 2 s

(c) Find its average acceleration between 1 s and 2 s

(d) Find its instantaneous acceleration at 2 s

Solution

(a) Att = 1 s; xi= 30 m

t = 2 s; xf= 10 m

vav= Motion In One Dimension m/s

(b) v = dx/dt = -5 -10t

At t= 2 s; v= −5−10(2) = −25 m/s

(c) At t = 1 s; v = −5−10 (1) = −15 m/s

t = 2 s; v = −5−10 (1) = −25 m/s

aav= Motion In One Dimension m/s2

(d)a= dv/dt = −10 m/s 2

Free Learning Resources
Know about Physics Wallah
Physics Wallah is an Indian edtech platform that provides accessible & comprehensive learning experiences to students from Class 6th to postgraduate level. We also provide extensive NCERT solutions, sample paper, NEET, JEE Mains, BITSAT previous year papers & more such resources to students. Physics Wallah also caters to over 3.5 million registered students and over 78 lakh+ Youtube subscribers with 4.8 rating on its app.
We Stand Out because
We provide students with intensive courses with India’s qualified & experienced faculties & mentors. PW strives to make the learning experience comprehensive and accessible for students of all sections of society. We believe in empowering every single student who couldn't dream of a good career in engineering and medical field earlier.
Our Key Focus Areas
Physics Wallah's main focus is to make the learning experience as economical as possible for all students. With our affordable courses like Lakshya, Udaan and Arjuna and many others, we have been able to provide a platform for lakhs of aspirants. From providing Chemistry, Maths, Physics formula to giving e-books of eminent authors like RD Sharma, RS Aggarwal and Lakhmir Singh, PW focuses on every single student's need for preparation.
What Makes Us Different
Physics Wallah strives to develop a comprehensive pedagogical structure for students, where they get a state-of-the-art learning experience with study material and resources. Apart from catering students preparing for JEE Mains and NEET, PW also provides study material for each state board like Uttar Pradesh, Bihar, and others

Copyright © 2025 Physicswallah Limited All rights reserved.