RD Sharma Solutions Class 10 Maths Chapter 5 Exercise 5.3: Chapter 5, Exercise 5.3 in RD Sharma’s Class 10 Maths book focuses on trigonometric ratios, a key concept in trigonometry. This exercise introduces the fundamental ratios—sine, cosine, tangent, cotangent, secant, and cosecant—defined based on the sides of a right triangle.
It guides students to calculate these ratios using given angles and triangle side lengths, helping them understand relationships among these ratios. Through step-by-step problem-solving, students enhance their ability to find and apply trigonometric ratios in various mathematical and real-world contexts.RD Sharma Solutions Class 10 Maths Chapter 5 Exercise 5.3 PDF
1. Evaluate the following:
(i) sin 20 o / cos 70 o
(ii) cos 19 o / sin 71 o
(iii) sin 21 o / cos 69 o
(iv) tan 10 o / cot 80 o
(v) sec 11 o / cosec 79 o
Solution:
(i) We have, sin 20 o / cos 70 o = sin (90 o – 70 o )/ cos 70 o = cos 70 o / cos70 o = 1 [∵ sin (90 – θ) = cos θ] (ii) We have, cos 19 o / sin 71 o = cos (90 o – 71 o )/ sin 71 o = sin 71 o / sin 71 o = 1 [∵ cos (90 – θ) = sin θ] (iii) We have, sin 21 o / cos 69 o = sin (90 o – 69 o )/ cos 69 o = cos 69 o / cos69 o = 1 [∵ sin (90 – θ) = cos θ] (iv) We have, tan 10 o / cot 80 o = tan (90 o – 10 o ) / cot 80 o = cot 80 o / cos80 o = 1 [∵ tan (90 – θ) = cot θ] (v) We have, sec 11 o / cosec 79 o = sec (90 o – 79 o )/ cosec 79 o = cosec 79 o / cosec 79 o = 1 [∵ sec (90 – θ) = cosec θ]2. Evaluate the following:
Solution:
We have, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ](ii) cos 48°- sin 42°
Solution:
We know that cos (90° − θ) = sin θ. So, cos 48° – sin 42° = cos (90° − 42°) – sin 42° = sin 42° – sin 42°= 0 Thus, the value of cos 48° – sin 42° is 0.
Solution:
We have, [∵ cot (90 – θ) = tan θ and cos (90 – θ) = sin θ]Solution:
We have, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]Solution:
We have, [∵ cot (90 – θ) = tan θ and tan (90 – θ) = cot θ]Solution:
We have , [∵ sin (90 – θ) = cos θ and sec (90 – θ) = cosec θ]
(vii) cosec 31° – sec 59°
Solution:
We have, cosec 31° – sec 59° Since, cosec (90 – θ) = cos θ So, cosec 31° – sec 59° = cosec (90° – 59 o ) – sec 59° = sec 59° – sec 59° = 0 Thus, cosec 31° – sec 59° = 0(viii) (sin 72° + cos 18°) (sin 72° – cos 18°)
Solution:
We know that, sin (90 – θ) = cos θ So, the given can be expressed as (sin 72° + cos 18°) (sin (90 – 18)° – cos 18°) = (sin 72° + cos 18°) (cos 18° – cos 18°) = (sin 72° + cos 18°) x 0 = 0(ix) sin 35° sin 55° – cos 35° cos 55°
Solution:
We know that, sin (90 – θ) = cos θ So, the given can be expressed as sin (90 – 55)° sin (90 – 35)° – cos 35° cos 55° = cos 55° cos 35° – cos 35° cos 55° = 0(x) tan 48° tan 23° tan 42° tan 67°
Solution:
We know that, tan (90 – θ) = cot θ So, the given can be expressed as tan (90 – 42)° tan (90 – 67)° tan 42° tan 67° = cot 42° cot 67° tan 42° tan 67° = (cot 42° tan 42°)(cot 67° tan 67°) = 1 x 1 [∵ tan θ x cot θ = 1] = 1(xi) sec 50° sin 40° + cos 40° cosec 50°
Solution:
We know that, sin (90 – θ) = cos θ and cos (90 – θ) = sin θ So, the given can be expressed as sec 50° sin (90 – 50)° + cos (90 – 50)° cosec 50° = sec 50° cos 50° + sin 50° cosec 50° = 1 + 1 [∵ sin θ x cosec θ = 1 and cos θ x sec θ = 1] = 23. Express each one of the following in terms of trigonometric ratios of angles lying between 0 o and 45 o
(i) sin 59 o + cos 56 o (ii) tan 65 o + cot 49 o (iii) sec 76 o + cosec 52 o
(iv) cos 78 o + sec 78 o (v) cosec 54 + sin 72 o (vi) cot 85 o + cos 75 o
(vii) sin 67 o + cos 75 o
Solution:
Using the below trigonometric ratios of complementary angles, we find the required sin (90 – θ) = cos θ cosec (90 – θ) = sec θ cos (90 – θ) = sin θ sec (90 – θ) = cosec θ tan (90 – θ) = cot θ cot (90 – θ) = tan θ (i) sin 59 o + cos 56 o = sin (90 – 31) o + cos (90 – 34) o = cos 31 o + sin 34 (ii) tan 65 o + cot 49 o = tan (90 – 25) o + cot (90 -41) o = cot 25 o + tan 41 o (iii) sec 76 o + cosec 52 o = sec (90 – 14) o + cosec (90 – 38) o = cosec 14 + sec 38 o (iv) cos 78 o + sec 78 o = cos (90 – 12) o + sec (90 – 12) o = sin 12 o + cosec 12 o (v) cosec 54 + sin 72 o = cosec (90 – 36) o + sin (90 – 18) o = sec 36 o + cos 18 o (vi) cot 85 o + cos 75 o = cot (90 – 5) o + cos (90 – 15) o = tan 5 o + sin 15 o4. Express cos 75 o + cot 75 o in terms of angles between 0 o and 30 o .
Solution:
Given, cos 75 o + cot 75 o Since, cos (90 – θ) = sin θ and cot (90 – θ) = tan θ cos 75 o + cot 75 o = cos (90 – 15) o + cot (90 – 15) o = sin 15 o + tan 15 o Hence, cos 75 o + cot 75 o can be expressed as sin 15 o + tan 15 o5. If sin 3A = cos (A – 26 o ), where 3A is an acute angle, find the value of A.
Solution:
Given, sin 3A = cos (A – 26 o ) Using cos (90 – θ) = sin θ, we have sin 3A = sin (90 o – (A – 26 o )) Now, comparing both L.H.S and R.H.S 3A = 90 o – (A – 26 o ) 3A + (A – 26 o ) = 90 o 4A – 26 o = 90 o 4A = 116 o A = 116 o /4 ∴ A = 29 o6. If A, B, C are the interior angles of a triangle ABC, prove that
(i) tan ((C + A)/ 2) = cot (B/2) (ii) sin ((B + C)/ 2) = cos (A/2)
Solution:
We know that in triangle ABC, the sum of the angles, i.e., A + B + C = 180 o So, C + A = 180 o – B ⇒ (C + A)/2 = 90 o – B/2 …… (i) And, B + C = 180 o – A ⇒ (B + C)/2 = 90 o – A/2 ……. (ii) (i) L.H.S = tan ((C + A)/ 2) ⇒ tan ((C + A)/ 2) = tan (90 o – B/2) [From (i)] = cot (B/2) [∵ tan (90 – θ) = cot θ] = R.H.S7. Prove that:
(i) tan 20° tan 35° tan 45° tan 55° tan 70° = 1
(ii) sin 48° sec 48° + cos 48° cosec 42° = 2
Solution:
(i) Taking L.H.S = tan 20° tan 35° tan 45° tan 55° tan 70° = tan (90° − 70°) tan (90° − 55°) tan 45°tan 55° tan70° = cot 70°cot 55° tan 45° tan 55° tan 70° [∵ tan (90 – θ) = cot θ] = (tan 70°cot 70°)(tan 55°cot 55°) tan 45° [∵ tan θ x cot θ = 1] = 1 × 1 × 1 = 18. Prove the following:
(i) sinθ sin (90 o – θ) – cos θ cos (90 o – θ) = 0
Solution:
Taking the L.H.S, sinθ sin (90 o – θ) – cos θ cos (90 o – θ) = sin θ cos θ – cos θ sin θ [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ] = 0
(ii)
Solution:
Taking the L.H.S,
(iii)
Solution:
Taking the L.H.S, [∵ tan (90 o – θ) = cot θ]
(iv)
Solution:
Taking L.H.S, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ](v) sin (50 o + θ ) – cos (40 o – θ ) + tan 1 o tan 10 o tan 20 o tan 70 o tan 80 o tan 89 o = 1
Solution:
Taking the L.H.S, = sin (50 o + θ) – cos (40 o – θ) + tan 1 o tan 10 o tan 20 o tan 70 o tan 80 o tan 89 o = [sin (90 o – (40 o – θ))] – cos (40 o – θ) + tan (90 – 89) o tan (90 – 80) o tan (90 – 70) o tan 70 o tan 80 o tan 89 o [∵ sin (90 – θ) = cos θ] = cos (40 o – θ) – cos (40 o – θ) + cot 89 o cot 80 o cot 70 o tan 70 o tan 80 o tan 89 o [∵ tan (90 o – θ) = cot θ] = 0 + (cot 89 o x tan 89 o ) (cot 80 o x tan 80 o ) (cot 70 o x tan 70 o ) = 0 + 1 x 1 x 1 [∵ tan θ x cot θ = 1] = 1= R.H.SConcept Clarity : The solutions break down trigonometric concepts step-by-step, helping students grasp fundamental ideas effectively.
Practice and Accuracy : Solving diverse problems enhances accuracy and builds confidence in handling trigonometric calculations.
Exam Preparation : Detailed solutions align with board exam standards, preparing students for various question patterns.
Foundation for Advanced Maths : Mastery in trigonometry is essential for higher-level math studies, making these solutions valuable for long-term learning.
Error-Free Learning : With precise answers, students can check their work and avoid common mistakes.