RD Sharma Solutions Class 10 Maths Chapter 7 Exercise 7.4: Chapter 7 of RD Sharma's Class 10 Maths book delves into Statistics, with Exercise 7.4 focusing on measures of central tendency, specifically the mean, median, and mode of grouped data. The exercise teaches students methods to compute these values efficiently using class intervals and frequencies.
Topics covered include calculating the mean using the direct, assumed mean, and step-deviation methods; finding the median by locating the cumulative frequency; and determining the mode by using the modal class. These concepts help students understand data summarization and interpretation, enhancing their skills in handling real-life statistical data.RD Sharma Solutions Class 10 Maths Chapter 7 Exercise 7.4 PDF
1. Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median:
715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719.
Solution:
Arranging the given data in ascending order, we have 694, 696, 699, 705, 710, 712, 715, 716, 719, 721, 725, 728, 729, 734, 745 As the number of terms is an old number, i.e., N = 15 We use the following procedure to find the median. Median = (N + 1)/2 th term = (15 + 1)/2 th term = 8 th term So, the 8 th term in the arranged order of the given data should be the median. Therefore, 716 is the median of the data.2. The following is the distribution of height of students of a certain class in a certain city:
Height (in cm): | 160 – 162 | 163 – 165 | 166 – 168 | 169 – 171 | 172 – 174 |
No of students: | 15 | 118 | 142 | 127 | 18 |
Find the median height.
Solution:
Class interval (exclusive) | Class interval (inclusive) | Class interval frequency | Cumulative frequency |
160 – 162 | 159.5 – 162.5 | 15 | 15 |
163 – 165 | 162.5 – 165.5 | 118 | 133(F) |
166 – 168 | 165.5 – 168.5 | 142(f) | 275 |
169 – 171 | 168.5 – 171.5 | 127 | 402 |
172 – 174 | 171.5 – 174.5 | 18 | 420 |
N = 420 |
3. Following is the distribution of I.Q. of 100 students. Find the median I.Q.
I.Q: | 55 – 64 | 65 – 74 | 75 – 84 | 85 – 94 | 95 – 104 | 105 – 114 | 115 – 124 | 125 – 134 | 135 – 144 |
No of students: | 1 | 2 | 9 | 22 | 33 | 22 | 8 | 2 | 1 |
Solution:
Class interval (exclusive) | Class interval (inclusive) | Class interval frequency | Cumulative frequency |
55 – 64 | 54.5 – 64-5 | 1 | 1 |
65 – 74 | 64.5 – 74.5 | 2 | 3 |
75 – 84 | 74.5 – 84.5 | 9 | 12 |
85 – 94 | 84.5 – 94.5 | 22 | 34(F) |
95 – 104 | 94.5 – 104.5 | 33(f) | 67 |
105 – 114 | 104.5 – 114.5 | 22 | 89 |
115 – 124 | 114.5 – 124.5 | 8 | 97 |
125 – 134 | 124.5 – 134.5 | 2 | 98 |
135 – 144 | 134.5 – 144.5 | 1 | 100 |
N = 100 |
4. Calculate the median from the following data:
Rent (in Rs): | 15 – 25 | 25 – 35 | 35 – 45 | 45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 |
No of houses: | 8 | 10 | 15 | 25 | 40 | 20 | 15 | 7 |
Solution:
Class interval | Frequency | Cumulative frequency |
15 – 25 | 8 | 8 |
25 – 35 | 10 | 18 |
35 – 45 | 15 | 33 |
45 – 55 | 25 | 58(F) |
55 – 65 | 40(f) | 98 |
65 – 75 | 20 | 118 |
75 – 85 | 15 | 133 |
85 – 95 | 7 | 140 |
N = 140 |
5. Calculate the median from the following data:
Marks below: | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 | 70 – 80 | 85 – 95 |
No of students: | 15 | 35 | 60 | 84 | 96 | 127 | 198 | 250 |
Solution:
Marks below | No. of students | Class interval | Frequency | Cumulative frequency |
10 | 15 | 0 – 10 | 15 | 15 |
20 | 35 | 10 – 20 | 20 | 35 |
30 | 60 | 20 – 30 | 25 | 60 |
40 | 84 | 30 – 40 | 24 | 84 |
50 | 96 | 40 – 50 | 12 | 96(F) |
60 | 127 | 50 – 60 | 31(f) | 127 |
70 | 198 | 60 – 70 | 71 | 198 |
80 | 250 | 70 – 80 | 52 | 250 |
N = 250 |
6. Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.
Age in years: | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
No of persons: | 5 | 25 | ? | 18 | 7 |
Solution:
Let the unknown frequency be taken as x,Class interval | Frequency | Cumulative frequency |
0 – 10 | 5 | 5 |
10 – 20 | 25 | 30(F) |
20 – 30 | x (f) | 30 + x |
30 – 40 | 18 | 48 + x |
40 – 50 | 7 | 55 + x |
N = 170 |
7. The following table gives the frequency distribution of married women by age at marriage.
Age (in years) | Frequency | Age (in years) | Frequency |
15 – 19 | 53 | 40 – 44 | 9 |
20 – 24 | 140 | 45 – 49 | 5 |
25 – 29 | 98 | 45 – 49 | 3 |
30 – 34 | 32 | 55 – 59 | 3 |
35 – 39 | 12 | 60 and above | 2 |
Calculate the median and interpret the results.
Solution:
Class interval (exclusive) | Class interval (inclusive) | Frequency | Cumulative frequency |
15 – 19 | 14.5 – 19.5 | 53 | 53 (F) |
20 – 24 | 19.5 – 24.5 | 140 (f) | 193 |
25 – 29 | 24.5 – 29.5 | 98 | 291 |
30 – 34 | 29.5 – 34.5 | 32 | 323 |
35 – 39 | 34.5 – 39.5 | 12 | 335 |
40 – 44 | 39.5 – 44.5 | 9 | 344 |
45 – 49 | 44.5 – 49.5 | 5 | 349 |
50 – 54 | 49.5 – 54.5 | 3 | 352 |
55 – 54 | 54.5 – 59.5 | 3 | 355 |
60 and above | 59.5 and above | 2 | 357 |
N =357 |
8. The following table gives the distribution of the life time of 400 neon lamps:
Life time: (in hours) | Number of lamps |
1500 – 2000 | 14 |
2000 – 2500 | 56 |
2500 – 3000 | 60 |
3000 – 3500 | 86 |
3500 – 4000 | 74 |
4000 – 4500 | 62 |
4500 – 5000 | 48 |
Find the median life.
Solution:
Life time | Number of lamps fi | Cumulative frequency (cf) |
1500 – 2000 | 14 | 14 |
2000 – 2500 | 56 | 70 |
2500 – 3000 | 60 | 130(F) |
3000 – 3500 | 86(f) | 216 |
3500 – 4000 | 74 | 290 |
4000 – 4500 | 62 | 352 |
4500 – 5000 | 48 | 400 |
N = 400 |
9. The distribution below gives the weight of 30 students in a class. Find the median weight of students:
Weight (in kg): | 40 – 45 | 45 – 50 | 50 – 55 | 55 – 60 | 60 – 65 | 65 – 70 | 70 – 75 |
No of students: | 2 | 3 | 8 | 6 | 6 | 3 | 2 |
Solution:
Weight (in kg) | Number of students fi | Cumulative frequency (cf) |
40 – 45 | 2 | 2 |
45 – 50 | 3 | 5 |
50 – 55 | 8 | 13 |
55 – 60 | 6 | 19 |
60 – 65 | 6 | 25 |
65 – 70 | 3 | 28 |
70 – 75 | 2 | 30 |
10. Find the missing frequencies and the median for the following distribution if the mean is 1.46
No. of accidents: | 0 | 1 | 2 | 3 | 4 | 5 | Total |
Frequencies (no. of days): | 46 | ? | ? | 25 | 10 | 5 | 200 |
Solution:
No. of accidents (x) | No. of days (f) | fx |
0 | 46 | 0 |
1 | x | x |
2 | y | 2y |
3 | 25 | 75 |
4 | 10 | 40 |
5 | 5 | 25 |
N = 200 | Sum = x + 2y + 140 |
No. of accidents (x) | No. of days (f) | Cumulative frequency |
0 | 46 | 46 |
1 | 76 | 122 |
2 | 38 | 160 |
3 | 25 | 185 |
4 | 10 | 195 |
5 | 5 | 200 |
N = 200 |
It’s seen that,
N = 200 N/2 = 200/2 = 100 So, the cumulative frequency just more than N/2 is 122 Therefore, the median is 1.In-Depth Understanding of Statistics Concepts : This exercise covers key statistical concepts such as mean, median, and mode, helping students to understand their applications and calculations thoroughly.
Improves Problem-Solving Skills : By working through these solutions, students enhance their analytical and problem-solving skills, learning different methods to approach statistical problems effectively.
Clarification of Step-by-Step Methods : RD Sharma’s solutions provide detailed, step-by-step explanations for each question, which is particularly helpful for students in grasping the sequential approach to solving complex statistical problems.
Preparation for Exams : These exercises closely align with CBSE exam patterns, helping students to get accustomed to the types of questions that may appear in their exams, ultimately boosting confidence and preparedness.
Practice in Data Interpretation : The exercise focuses on data interpretation skills, which are crucial not only for exams but also for real-world applications where statistical data is essential.
Builds Speed and Accuracy : Regular practice with RD Sharma solutions helps students improve their calculation speed and accuracy, both essential for handling time constraints in exams.