Cinnamic Acid is an organic compound composed of an acrylic acid group with a phenyl substituent at the third position. As a monocarboxylic acid, cinnamon oil and shea butter are familiar sources of cinnamon oil and shea butter. The formula for this chemical compound is C 9 H 8 O 2 . Despite its white-colored crystallized appearance, it is highly soluble in organic solvents.
C 9 H 8 O 2 is the molecular formula of cinnamic acid, which can be obtained either from cinnamon oil or from balsams like storax. It is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position.
Compounds have the following physical properties
Below are the compound's chemical properties, including its IUPAC name, trans-cinnamic acid molecular weight, cinnamic acid molecular formula, complexity, hydrogen bond donor count, and acceptor count.
There are two types of cinnamic acid: trans-cinnamic acid and cis-cinnamic acid.
Also Check – Theoretical Yield Formula
The molecular formula of cinnamic acid, C 9 H 8 O 2 , specifies the number and type of elements present. Its IUPAC name is (2E)-3-Phenylprop-2-enoic acid, classified as a monocarboxylic acid. Its conjugate is known as cinnamate and it falls under the category of styrenes in organic chemistry. Commonly referred to as trans-cinnamic acid, its molecular weight of 148.16 g/mol is determined by adding the atomic weights of all its elements.
Also Check – Tyndall Effect Formula
Myriad natural products are synthesized from cinnamic acid, a central intermediate in the biosynthesis process. Among these natural products are lignols (precursors of lignin and lignocellulose), stilbenes, catechins, coumarins, flavonoids, isoflavonoids, aurones, and phenylpropanoids. In order to synthesize cinnamic acid, the enzyme phenylalanine ammonia-lyase (PAL) acts on phenylalanine.
There are several ways to obtain cinnamic acid. For instance, it can be found in the oil of cinnamon, balsams such as storax, and shea butter. Cinnamic acid has a honey-like odor.
A base-catalyzed condensation of benzaldehyde and acetyl chloride was used to synthesize cinnamic acid for the first time. Rainer Ludwig Claisen, who described the synthesis of ethyl cinnamate by reacting ethyl acetate with benzaldehyde in 1890, followed by hydrolysis of the acid chloride product. As a result, sodium was used as a base in this synthesis.
An alternative method for producing cinnamic acid is through a Knoevenagel condensation reaction. The necessary reactants for this process include malonic acid, benzaldehyde, and a weak base. Following this step, the acid is then decarboxylated through catalysis. Other approaches to obtaining cinnamic acid include oxidizing cinnamaldehyde, condensing benzal chloride with sodium acetate (followed by acid hydrolysis), and utilizing the Perkin reaction. In fact, the Perkin reaction has been used as a commercial route for producing cinnamic acid for many years.
Also Check – Nucleophile Formula
Cinnamic acid is a versatile compound, with various applications in synthetic indigo, flavorings, and pharmaceuticals. It also serves as a precursor for the production of ethyl cinnamate, benzyl cinnamate, and methyl cinnamate in the perfume industry. Additionally, it can be enzymatically converted into phenylalanine, making it a key component in the production of the sweetener aspartame. In non-polar solvents, cinnamic acid has a tendency to dimerize, leading to diverse linear free energy relationships.
In spite of the numerous uses of cinnamic acid, there are some safety hazards associated with this acid. First of all, when this acid comes into contact with the skin, it can cause skin irritation/corrosion. Furthermore, cinnamic acid can cause serious eye irritation if it comes into contact with the eyes. Furthermore, respiratory irritation may also occur. Therefore, taking precautions when handling cinnamic acid is essential.