NCERT Solutions for Class 10 Maths Chapter 8: NCERT Solutions for Class 10 Maths Chapter 8, Introduction to Trigonometry, are helpful resources for students. They make it easier to understand tricky concepts and score well in the CBSE Class 10 board exam.
These solutions are created by subject experts and cover all the questions from the textbook. These solutions are based on the latest CBSE Syllabus for 2023-24 and match the exam pattern ensuring students are well-prepared.NCERT Solutions for Class 10 Maths Chapter 8 PDF
Exercise 8.1
1. In Δ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine : (i) sin A, cos A (ii) sin C, cos CAnswer:
Let us draw a right angled triangle ABC, right angled at B. Using Pythagoras theorem,Read More - Top Scoring Subjects in CBSE Class 10 Board Exams
2. In adjoining figure, find tan P – cot R.Answer:
Answer:
Given: A triangle ABC in whichAnswer:
Answer:
Consider a triangle ABC in whichAnswer:
cos A = cos ButAnswer:
Consider a triangle ABCAnswer:
Consider a triangle ABC AB=4cm, BC= 3cmAnswer:
Consider a triangle ABC in whichRelated Links -
Answer:
Given that, PR + QR = 25 , PQ = 5 Let PR be x. ∴ QR = 25 - x By Pythagoras theorem , PR2 = PQ 2 + QR 2 x 2 = (5)2 + (25 - x) 2 x 2 = 25 + 625 + x 2 - 50x 50x = 650 x = 13 ∴ PR = 13 cm QR = (25 - 13) cm = 12 cm sin P = QR/PR = 12/13 cos P = PQ/PR = 5/13 tan P = QR/PQ = 12/5 11. State whether the following are true or false. Justify your answer. (i) The value of tan A is always less than 1. (ii) sec A = 12/5 for some value of angle A. (iii) cos A is the abbreviation used for the cosecant of angle A. (iv) cot A is the product of cot and A. (v) sin θ = 4/3 for some angle θ.Answer:
i) False. In ΔABC in which ∠B = 90º, AB = 3, BC = 4 and AC = 5 Value of tan A = 4/3 which is greater than. The triangle can be formed with sides equal to 3, 4 and hypotenuse = 5 as it will follow the Pythagoras theorem. AC 2 = AB 2 + BC 2 5 2 = 3 2 + 4 2 25 = 9 + 16 25 = 25 (ii) True. Let a ΔABC in which ∠B = 90º,AC be 12k and AB be 5k, where k is a positive real number. By Pythagoras theorem we get, AC 2 = AB 2 + BC 2 (12k) 2 = (5k) 2 + BC 2 BC 2 + 25k 2 = 144k 2 BC 2 = 119k 2 Such a triangle is possible as it will follow the Pythagoras theorem. (iii) False. Abbreviation used for cosecant of angle A is cosec A.cos A is the abbreviation used for cosine of angle A. (iv) False. cot A is not the product of cot and A. It is the cotangent of ∠A. (v) False. sin θ = Height/Hypotenuse We know that in a right angled triangle, Hypotenuse is the longest side. ∴ sin θ will always less than 1 and it can never be 4/3 for any value of θ.Exercise 8.2
1. Evaluate the following :
(i) sin 60° cos 30° + sin 30° cos 60°
(ii) 2 tan 2 45° + cos 2 30° – sin 2 60°
(iii) cos 45°/(sec 30° + cosec 30°)
(iv) (sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)
(v) (5cos 2 60° + 4sec 2 30° - tan 2 45°)/(sin 2 30° + cos 2 30°)
Answer:
(i) sin 60° cos 30° + sin 30° cos 60°Answer:
(i) 2tan 30°/1+tan 2 30° = (A) sin 60° (B) cos 60° (C) tan 60° (D) sin 30° =Answer:
Answer:
(i) False. Let A = 30° and B = 60°, then sin (A + B) = sin (30° + 60°) = sin 90° = 1 and, sin A + sin B = sin 30° + sin 60° = 1/2 + √3/2 = 1+√3/2 (ii) True. sin 0° = 0 sin 30° = 1/2 sin 45° = 1/√2 sin 60° = √3/2 sin 90° = 1 Thus the value of sin θ increases as θ increases. (iii) False. cos 0° = 1 cos 30° = √3/2 cos 45° = 1/√2 cos 60° = 1/2 cos 90° = 0 Thus the value of cos θ decreases as θ increases. (iv) True. cot A = cos A/sin A cot 0° = cos 0°/sin 0° = 1/0 = undefined.Exercise 8.3
1. Evaluate : (i) sin 18°/cos 72° (ii) tan 26°/cot 64° (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59°Answer:
(i) sin 18°/cos 72° = sin (90° - 18°) /cos 72° = cos 72° /cos 72° = 1 (ii) tan 26°/cot 64° = tan (90° - 36°)/cot 64° = cot 64°/cot 64° = 1 (iii) cos 48° - sin 42° = cos (90° - 42°) - sin 42° = sin 42° - sin 42° = 0 (iv) cosec 31° - sec 59° = cosec (90° - 59°) - sec 59° = sec 59° - sec 59° = 0 2. Show that : (i) tan 48° tan 23° tan 42° tan 67° = 1 (ii) cos 38° cos 52° – sin 38° sin 52° = 0Answer:
(i) tan 48° tan 23° tan 42° tan 67° = tan (90° - 42°) tan (90° - 67°) tan 42° tan 67° = cot 42° cot 67° tan 42° tan 67° = (cot 42° tan 42°) (cot 67° tan 67°) = 1×1 = 1 (ii) cos 38° cos 52° - sin 38° sin 52° = cos (90° - 52°) cos (90°-38°) - sin 38° sin 52° = sin 52° sin 38° - sin 38° sin 52° = 0 3. If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.Answer:
tan 2A = cot (A- 18°) ⇒ cot (90° - 2A) = cot (A -18°) Equating angles, ⇒ 90° - 2A = A- 18° ⇒ 108° = 3A ⇒ A = 36° 4. If tan A = cot B, prove that A + B = 90°.Answer:
tan A = cot B ⇒ tan A = tan (90° - B) ⇒ A = 90° - B ⇒ A + B = 90° 5. If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.Answer:
sec 4A = cosec (A - 20°) ⇒ cosec (90° - 4A) = cosec (A - 20°) Equating angles, 90° - 4A= A- 20° ⇒ 110° = 5A ⇒ A = 22° 6. If A, B and C are interior angles of a triangle ABC, then show that sin (B+C/2) = cos A/2Answer:
Answer:
sin 67° + cos 75° = sin (90° - 23°) + cos (90° - 15°) = cos 23° + sin 15°Exercise 8.4
1. Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.Answer:
Answer:
(i) (sin 2 63° + sin 2 27°)/(cos 2 17° + cos 2 73°)Answer:
(i) (i) 9 sec 2 A - 9 tan 2 A = (A) 1 (B) 9 (C) 8 (D) 0Answer:
(i) (cosec θ - cot θ) 2 = (1-cos θ)/(1+cos θ)