ICSE Class 8 Maths Selina Solutions Chapter 13: ICSE Class 8 Maths Selina Solutions for Chapter 13, "Factorisation," explain how to break down algebraic expressions into simpler factors.
This chapter covers methods like finding common factors, grouping terms, and using special patterns such as difference of squares and perfect squares. These solutions are helpful for students preparing for exams, as they offer practice and reinforce important skills needed for further studies in math.ICSE Class 8 Maths Selina Solutions Chapter 13 Factorisation PDF
Question 1
15x + 5
Solution:-
Simplifying we get 15x + 5 =5(3x+1)Question 2
a 3 − a 2 + a
Solution:-
Simplifying we get a 3 − a 2 + a = a (a 2 – a + 1)Question 3
3x 2 + 6x 3
Solution:
Simplifying we get 3x 2 + 6x 3 = 3x 2 (1+2x)Question 4
4a 2 − 8ab
Solution
4a 2 − 8ab = 4a (a−2b)Question 5
2x 3 b 2 − 4x 5 b 4
Solution:-
Simplifying we get 2x 3 b 2 − 4x 5 b 4 = 2x 3 b 2 (1−2x 2 b 2 )Question 6
15x 4 y 3 − 20x 3 y
Solution:-
15x 4 y 3 − 20x 3 y = 5x 3 y (3xy 2 − 4)Question 7.
a 3 b − a 2 b 2 − b 3
Solution:-
Simplifying we get a 3 b − a 2 b 2 −b 3 = b (a 3 − a 2 b − b 2 )Question 8.
6x 2 y + 9xy 2 + 4y 3
Solution:-
Simplifying we get 6x 2 y + 9xy 2 + 4y 3 = y (6x 2 + 9xy +4y 2 )Question 9
17a 6 b 8 − 34a 4 b 6 + 51a 2 b 4
Solution:-
17a 6 b 8 − 34a 4 b 6 + 51a 2 b 4 Simplifying we get 17a 2 b 4 (a 4 b 4 − 2a 2 b 2 + 3)Question 10
3x 5 y − 27x 4 y 2 + 12x 3 y 3Solution:-
Simplifying we get 3x 5 y − 27x 4 y 2 + 12x 3 y 3 = 3x 3 y (x 2 − 9xy + 4y 2 )Question 11.
x 2 (a − b) − y 2 (a − b) + z 2 (a−b)Solution:-
x 2 (a − b) −y 2 (a – b) + z 2 (a − b) = (a − b) (x 2 − y 2 + z 2 )Question 12.
(x + y) (a + b) + (x – y) (a + b)Solution:-
(x + y) (a + b) + (x – y) (a+b) = (a + b) (2x) = 2x(a+b)Question 13
2b(2a + b) – 3c(2a + b)Solution:-
2b(2a + b) – 3c(2a + b) = (2a + b) (2b – 3c)Question 14.
12abc − 6a 2 b 2 c 2 + 3a 3 b 3 c 3Solution:-
12abc − 6a 2 b 2 c 2 + 3a 3 b 3 c 3 = 3abc(4 − 2abc + a 2 b 2 c 2 )Question 15.
4x(3x – 2y) – 2y(3x – 2y)Solution:-
4x(3x – 2y) – 2y(3x – 2y) = (3x – 2y) (4x – 2y) =(3x − 2y) × 2 (2x − y) =2(3x – 2y) (2x – y)