William Henry Perkin Reading Answers passage is one of the popular question choices in IELTS Reading practice. It has become significant choice for it combines scientific history with engaging storytelling. It details the life and work of Perkin, focusing on his accidental discovery of mauveine, the world’s first synthetic dye. Students often encounter related IELTS Reading question types such as matching headings, sentence completion, and multiple choice.
By studying this William Henry Perkin Reading Answers passage, learners can improve their understanding of complex ideas and chronological sequences while enhancing their vocabulary. This text is also useful for mastering strategies like those found in how to handle multiple-choice questions in IELTS Reading.
IELTS William Henry Perkin Reading Answers Passage explores the remarkable life and discoveries of William Henry Perkin. It details his early scientific curiosity, his groundbreaking mauveine invention, and the lasting impact of synthetic dye reading answers on fashion and medicine, as covered in popular IELTS Reading Topics resources. Check the entire William Henry Perkin Reading Answers Passage below
William Henry Perkin was born on March 12, 1838, in London, England. As a boy, Perkin’s curiosity prompted early interests in the arts, sciences, photography, and engineering. But it was a chance stumbling upon a run-down, yet functional, laboratory in his late grandfather’s home that solidified the young man’s enthusiasm for chemistry.
As a student at the City of London School, Perkin became immersed in the study of chemistry. His talent and devotion to the subject were perceived by his teacher, Thomas Hall, who encouraged him to attend a series of lectures given by the eminent scientist Michael Faraday at the Royal Institution. Those speeches fired the young chemist’s enthusiasm further, and he later went on to attend the Royal College of Chemistry, which he succeeded in entering in 1853, at the age of 15.
At the time of Perkin’s enrolment, the Royal College of Chemistry was headed by the noted German chemist August Wilhelm Hofmann. Perkin’s scientific gifts soon caught Hofmann’s attention and, within two years, he became Hofmann’s youngest assistant. Not long after that, Perkin made the scientific breakthrough that would bring him both fame and fortune.
At the time, quinine was the only viable medical treatment for malaria. The drug is derived from the bark of the cinchona tree, native to South America, and by 1856 demand for the drug was surpassing the available supply. Thus, when Hofmann made some passing comments about the desirability of a synthetic substitute for quinine, it was unsurprising that his star pupil was moved to take up the challenge.
During his vacation in 1856, Perkin spent his time in the laboratory on the top floor of his family’s house. He was attempting to manufacture quinine from aniline, an inexpensive and readily available coal tar waste product. Despite his best efforts, however, he did not end up with quinine. Instead, he produced a mysterious dark sludge. Luckily, Perkin’s scientific training and nature prompted him to investigate the substance further. Incorporating potassium dichromate and alcohol into the aniline along various stages of the experimental process, he finally produced a deep purple solution. And, proving the truth of the famous scientist Louis Pasteur’s words ‘chance favours only the prepared mind’, Perkin saw the potential of his unexpected find.
Historically, textile dyes were made from such natural sources as plants and animal excretions. Some of these, such as the glandular mucus of snails, were difficult to obtain and outrageously expensive. In addition, the purple colour extracted from a snail was once so costly that in society at that time only the rich could afford it. Further, natural dyes tended to be muddy in hue and fade quickly.
Perkin quickly grasped that his purple solution could be used to colour fabric, thus making it the world’s first synthetic dye. Realising the importance of this breakthrough, he lost no time in patenting it. But perhaps the most fascinating of all Perkin’s reactions to his find was his nearly instant recognition that the new dye had commercial possibilities.
Perkin originally named his dye Tyrian Purple, but it later became commonly known as mauve (from the French for the plant used to make the colour violet). He asked advice of Scottish dye works owner Robert Pullar, who assured him that manufacturing the dye would be well worth it if the colour remained fast (i.e. would not fade) and the cost was relatively low. So, over the fierce objections of his mentor Hofmann, he left college to give birth to the modern chemical industry.
With the help of his father and brother, Perkin set up a factory not far from London. Utilising the cheap and plentiful coal tar that was an almost unlimited byproduct of London’s gas street lighting, the dye works began producing the world’s first synthetically dyed material in 1857. The company received a commercial boost from the Empress Eugenie of France, when she decided the new colour flattered her. Very soon, mauve was the necessary shade for all the fashionable ladies in that country.
Not to be outdone, England’s Queen Victoria also appeared in public wearing a mauve gown, thus making it all the rage in England as well. The dye was bold and fast, and the public clamoured for more. Perkin went back to the drawing board.
Although Perkin’s fame was achieved and fortune assured by his first discovery, the chemist continued his research. Among other dyes he developed and introduced were aniline red (1859) and aniline black (1863) and, in the late 1860s, Perkin’s green. It is important to note that Perkin’s synthetic dye discoveries had outcomes far beyond the merely decorative. The dyes also became crucial to medical research in many ways. For instance, they were used to stain previously invisible microbes and bacteria, allowing researchers to identify such bacilli as tuberculosis, cholera, and anthrax. Artificial dyes continue to play a crucial role today. And, in what would have been particularly pleasing to Perkin, their current uses include the search for a vaccine against malaria.
Provided here is the Sample Question on IELTS William Henry Perkin Reading Answers, focusing on comprehension of his biography, scientific experiments, and mauveine reading answers milestone. Learners engage with passages that test vocabulary, inference, and detail recognition skills relevant to IELTS Reading Topics, enhancing preparation for real exam scenarios effectively.
Solve the mentioned question to know about your understanding and analytical skills.
Write TRUE if the statement agrees with the information in the passage.
Write FALSE if the statement contradicts the passage.
Write NOT GIVEN if there is no information on this in the passage.
William Henry Perkin was inspired to study chemistry after visiting Michael Faraday’s laboratory.
Quinine was made from the bark of a South American tree.
Perkin’s mauve dye was the first to be completely resistant to fading.
Queen Victoria’s use of mauve clothing boosted its popularity in England.
Perkin abandoned chemistry research after his first commercial success.
Match the following years with the correct event. Write the correct letter (A–E) next to each year.
Events | Years |
A. Development of aniline black | 1838 |
B. Birth of William Henry Perkin | 1857 |
C. Mauve production begins | 1859 |
D. Discovery of Perkin’s green | 1863 |
E. Creation of aniline red | Late 1860s |
Complete the sentences below using NO MORE THAN TWO WORDS from the passage.
Perkin first attempted to make quinine using a substance called __________.
The original name of mauve was __________.
Textile dyes before Perkin’s discovery were often __________ and faded quickly.
Perkin’s mauve dye used __________ as its primary raw material.
Synthetic dyes later helped scientists identify diseases such as tuberculosis, cholera, and __________.
4. William Henry Perkin Multiple Choice Questions (MCQ)
Choose the correct letter A, B, C, or D.
What prompted Perkin to first try making synthetic quinine?
A. A request from Queen Victoria
B. A suggestion by August Wilhelm Hofmann
C. An experiment by Michael Faraday
D. A challenge from Robert Pullar
Why was Perkin’s mauve dye considered revolutionary?
A. It was cheaper and brighter than natural dyes
B. It was made from plant extracts
C. It was a type of natural dye
D. It was only affordable to the wealthy
How did Empress Eugenie influence the popularity of mauve?
A. She used it in royal flags
B. She wore it at public events
C. She financed Perkins’ factory
D. She patented the dye
William Henry Perkin Reading Answers segment summarises his accidental creation of Tyrian Purple, later known as mauve. It highlights how this synthetic dye reading answers example changed industries, linking to IELTS Reading Topics and mauveine reading answers practice materials that assess understanding of scientific achievements and historical context. Check the table below to complete and know the IELTS William Henry Perkin Reading Answers:
IELTS William Henry Perkin Reading Answers | ||
Question Type | Question / Statement | Answer |
True / False / Not Given | William Henry Perkin was inspired to study chemistry after visiting Faraday’s lab. | FALSE |
Quinine was made from the bark of a South American tree. | TRUE | |
Perkin’s mauve dye was the first to be completely resistant to fading. | NOT GIVEN | |
Queen Victoria’s use of mauve clothing boosted its popularity in England. | TRUE | |
Perkin abandoned chemistry research after his first commercial success. | FALSE | |
Matching Information | 1838 — B. Birth of William Henry Perkin | B |
1857 — C. Mauve production begins | C | |
1859 — E. Creation of aniline red | E | |
1863 — A. Development of aniline black | A | |
Late 1860s — D. Discovery of Perkin’s green | D | |
Sentence Completion | Perkin first attempted to make quinine using a substance called aniline. | aniline |
The original name of mauve was Tyrian Purple. | Tyrian Purple | |
Textile dyes before Perkin’s discovery were often muddy and faded quickly. | muddy | |
Perkin’s mauve dye used coal tar as its primary raw material. | coal tar | |
Synthetic dyes later helped scientists identify diseases such as tuberculosis, cholera, and anthrax. | anthrax | |
Multiple Choice | What prompted Perkin to first try making synthetic quinine? | B |
Why was Perkin’s mauve dye considered revolutionary? | A | |
How did Empress Eugenie influence the popularity of mauve? | B |
IELTS Reading Band Score | IELTS Listening Band Score |
IELTS Speaking Band Score | IELTS Writing Band Score |