Physics Wallah

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 help students understand how to add and subtract fractions with easy and step-by-step explanations. These solutions make learning simple and build strong math skills.
authorImageAnanya Gupta8 Jun, 2025
Share

Share

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 help students with a clear and detailed understanding of fractions and their operations. This exercise focuses on important concepts such as addition and subtraction of fractions with like and unlike denominators, simplifying fractions, and converting mixed numbers to improper fractions and vice versa.

The exercise also includes problems on comparing fractions, finding equivalent fractions, and applying these skills to solve word problems. The step-by-step solutions help students build a solid grasp of fraction concepts, enhance their problem-solving abilities, and prepare them for more advanced topics in mathematics.

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 Introduction 

Exercise 6.9 in Chapter 6 of RD Sharma Class 6 Maths focuses on the addition and subtraction of fractions. This exercise is designed to help students understand how to add and subtract fractions with both like and unlike denominators.

Students will learn important steps such as:

  • Finding a common denominator when the denominators are different.

  • Converting fractions to equivalent fractions with the same denominator.

  • Adding or subtracting the numerators while keeping the denominator the same.

  • Simplifying the resulting fraction to its lowest terms.

  • Applying these methods to solve word problems and practical examples involving fractions.

Access Answers to Maths RD Sharma Solutions for Class 6 Chapter 6 Fractions Exercise 6.9

Here are the detailed solutions for RD Sharma Class 6 Maths Chapter 6 Exercise 6.9 on Fractions.

1. Add:

(i) 3/4 and 5/6

(ii) 7/10 and 2/15

(iii) 8/13 and 2/3

(iv) 4/5 and 7/15

Solution:

(i) 3/4 and 5/6

It can be written as

3/4 + 5/6

We know that the LCM of 4 and 6 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(3 × 3)/ (4 × 3)] + [(5 × 2)/ (6 × 2)]

On further calculation

= 9/12 + 10/ 12

We get

= (9 + 10)/ 12 = 19/12

(ii) 7/10 and 2/15

It can be written as

7/10 + 2/15

We know that the LCM of 10 and 15 is 30

In order to convert fraction into equivalent fraction having 30 as denominator

= [(7 × 3)/ (10 × 3)] + [(2 × 2)/ (15 × 2)]

On further calculation

= 21/30 + 4/ 30

We get

= (21 + 4)/ 30 = 25/30 = 5/6

(iii) 8/13 and 2/3

It can be written as

8/13 + 2/3

We know that the LCM of 13 and 3 is 39

In order to convert fraction into equivalent fraction having 39 as denominator

= [(8 × 3)/ (13 × 3)] + [(2 × 13)/ (3 × 13)]

On further calculation

= 24/39 + 26/39

We get

= (24 + 26)/ 39 = 50/39

(iv) 4/5 and 7/15

It can be written as

4/5 + 7/15

We know that the LCM of 5 and 15 is 1

In order to convert fraction into equivalent fraction having 15 as denominator

= [(4 × 3)/ (5 × 3)] + [(7 × 1)/ (15 × 1)]

On further calculation

= 12/15 + 7/ 15

We get

= (12 + 7)/ 15 = 19/15

2. Subtract:

(i) 2/7 from 19/21

(ii) 21/25 from 18/20

(iii) 7/16 from 2

(iv) 4/15 from 2 1/5

Solution:

(i) 2/7 from 19/21

It can be written as

19/21 – 2/7

We know that LCM of 21 and 7 is 21

In order to convert fraction into equivalent fraction having 21 as denominator

= [(19 × 1)/ (21 × 1)] – [(2 × 3)/ (7 × 3)]

On further calculation

= 19/21 – 6/21

We get

= (19 – 6)/21 = 13/21

(ii) 21/25 from 18/20

It can be written as

18/20 – 21/25

We know that LCM of 20 and 25 is 100

In order to convert fraction into equivalent fraction having 100 as denominator

= [(18 × 5)/ (20 × 5)] – [(21 × 4)/ (25 × 4)]

On further calculation

= 90/100 – 84/100

We get

= (90 – 84)/100 = 6/100 = 3/50

(iii) 7/16 from 2

It can be written as

2/1 – 7/16

We know that LCM of 1 and 16 is 16

In order to convert fraction into equivalent fraction having 16 as denominator

= [(16 × 2)/ (16 × 1)] – [(7 × 1)/ (16 × 1)]

On further calculation

= 32/16 – 7/16

We get

= (32 – 7)/16 = 25/16

(iv) 4/15 from 2 1/5

It can be written as

11/5 – 4/15

We know that LCM of 5 and 15 is 15

In order to convert fraction into equivalent fraction having 15 as denominator

= [(11 × 3)/ (5 × 3)] – [(4 × 1)/ (15 × 1)]

On further calculation

= 33/15 – 4/15

We get

= (33 – 4)/15 = 29/15

3. Find the difference of:

(i) 13/24 and 7/16

(ii) 5/18 and 4/15

(iii) 1/12 and 3/4

(iv) 2/3 and 6/7

Solution:

(i) 13/24 and 7/16

It can be written as

13/24 – 7/16

We know that LCM of 24 and 16 is 48

In order to convert fraction into equivalent fraction having 48 as denominator

= [(13 × 2)/ (24 × 2)] – [(7 × 3)/ (16 × 3)]

On further calculation

= 26/48 – 21/48

We get

= (26 – 21)/48 = 5/48

(ii) 5/18 and 4/15

It can be written as

5/18 – 4/15

We know that LCM of 18 and 15 is 90

In order to convert fraction into equivalent fraction having 90 as denominator

= [(5 × 5)/ (18 × 5)] – [(4 × 6)/ (15 × 6)]

On further calculation

= 25/90 – 24/90

We get

= (25 – 24)/90 = 1/90

(iii) 1/12 and 3/4

It can be written as

3/4 – 1/12

We know that LCM of 4 and 12 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(3 × 3)/ (4 × 3)] – [(1 × 1)/ (12 × 1)]

On further calculation

= 9/12 – 1/12

We get

= (9 – 1)/12 = 8/12 = 2/3

(iv) 2/3 and 6/7

It can be written as

6/7 – 2/3

We know that LCM of 7 and 3 is 21

In order to convert fraction into equivalent fraction having 48 as denominator

= [(6 × 3)/ (7 × 3)] – [(2 × 7)/ (3 × 7)]

On further calculation

= 18/21 – 14/21

We get

= (18 – 14)/21 = 4/21

4. Subtract as indicated:

(i) 8/3 – 5/9

(ii) 4 2/5 – 2 1/5

(iii) 5 6/7 – 2 2/3

(iv) 4 3/4 – 2 1/6

Solution:

(i) 8/3 – 5/9

It can be written as

8/3 – 5/9

We know that LCM of 3 and 9 is 9

In order to convert fraction into equivalent fraction having 9 as denominator

= [(8 × 3)/ (3 × 3)] – [(5 × 1)/ (9 × 1)]

On further calculation

= 24/9 – 5/9

We get

= (24 – 5)/9 = 19/9

(ii) 4 2/5 – 2 1/5

It can be written as

22/5 – 11/5

We get

= (22 – 11)/5 = 11/5

(iii) 5 6/7 – 2 2/3

It can be written as

41/7 – 8/3

We know that LCM of 7 and 3 is 21

In order to convert fraction into equivalent fraction having 21 as denominator

= [(41 × 3)/ (7 × 3)] – [(8 × 7)/ (3 × 7)]

On further calculation

= 123/21 – 56/21

We get

= (123 – 56)/21 = 67/21

(iv) 4 3/4 – 2 1/6

It can be written as

19/4 – 13/6

We know that LCM of 4 and 6 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(19 × 3)/ (4 × 3)] – [(13 × 2)/ (6 × 2)]

On further calculation

= 57/12 – 26/12

We get

= (57 – 26)/12 = 31/12

5. Simplify:

(i) 2/3 + 3/4 + 1/2

(ii) 5/8 + 2/5 + 3/4

(iii) 3/10 + 7/15 + 3/5

(iv) 3/4 + 7/16 + 5/8

(v) 4 2/3 + 3 1/4 + 7 1/2

(vi) 7 1/3 + 3 2/3 + 5 1/6

(vii) 7 + 7/4 + 5 1/6

(viii) 5/6 + 3 + 3/4

(ix) 7/18 + 5/6 + 1 1/12

Solution:

(i) 2/3 + 3/4 + 1/2

We know that the LCM of 3, 4 and 2 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(2 × 4)/ (3 × 4)] + [(3 × 3)/ (4 × 3)] + [(1 × 6)/ (2 × 6)]

On further calculation

= 8/12+ 9/12 + 6/12

We get

= (8 + 9 + 6)/ 12 = 23/12

(ii) 5/8 + 2/5 + 3/4

We know that the LCM of 8, 5 and 4 is 40

In order to convert fraction into equivalent fraction having 40 as denominator

= [(5 × 5)/ (8 × 5)] + [(2 × 8)/ (5 × 8)] + [(3 × 10)/ (4 × 10)]

On further calculation

= 25/40 + 16/40 + 30/40

We get

= (25 + 16 + 30)/ 40 = 71/40

(iii) 3/10 + 7/15 + 3/5

We know that the LCM of 10, 15 and 5 is 30

In order to convert fraction into equivalent fraction having 30 as denominator

= [(3 × 3)/ (10 × 3)] + [(7 × 2)/ (15 × 2)] + [(3 × 6)/ (5 × 6)]

On further calculation

= 9/30+ 14/30 + 18/30

We get

= (9 + 14 + 18)/ 30 = 41/30

(iv) 3/4 + 7/16 + 5/8

We know that the LCM of 4, 16 and 8 is 16

In order to convert fraction into equivalent fraction having 16 as denominator

= [(3 × 4)/ (4 × 4)] + [(7 × 1)/ (16 × 1)] + [(5 × 2)/ (8 × 2)]

On further calculation

= 12/16 + 7/16 + 10/16

We get

= (12 + 7 + 10)/ 16 = 29/16

(v) 4 2/3 + 3 1/4 + 7 1/2

It can be written as

14/3 + 13/4 + 15/2

We know that the LCM of 3, 4 and 2 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(14 × 4)/ (3 × 4)] + [(13 × 3)/ (4 × 3)] + [(15 × 6)/ (2 × 6)]

On further calculation

= 56/12 + 39/12 + 90/12

We get

= (56 + 39 + 90)/ 12 = 185/12

(vi) 7 1/3 + 3 2/3 + 5 1/6

It can be written as

22/3 + 11/3 + 31/6

We know that the LCM of 3, 3 and 6 is 6

In order to convert fraction into equivalent fraction having 6 as denominator

= [(22 × 2)/ (3 × 2)] + [(11 × 2)/ (3 × 2)] + [(31 × 1)/ (6 × 1)]

On further calculation

= 44/6 + 22/6 + 31/6

We get

= (44 + 22 + 31)/ 6 = 97/6

(vii) 7 + 7/4 + 5 1/6

It can be written as

7/1 + 7/4 + 31/6

We know that the LCM of 1, 4 and 6 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(7 × 12)/ (1 × 12)] + [(7 × 3)/ (4 × 3)] + [(31 × 2)/ (6 × 2)]

On further calculation

= 84/12 + 21/12 + 62/12

We get

= (84 + 21 + 62)/12 = 167/12

(viii) 5/6 + 3 + 3/4

We know that the LCM of 6, 1 and 4 is 12

In order to convert fraction into equivalent fraction having 12 as denominator

= [(5 × 2)/ (6 × 2)] + [(3 × 12)/ (1 × 12)] + [(3 × 3)/ (4 × 3)]

On further calculation

= 10/12 + 36/12 + 9/12

We get

= (10 + 36 + 9)/ 12 = 55/12

(ix) 7/18 + 5/6 + 1 1/12

It can be written as

7/18 + 5/6 + 13/12

We know that the LCM of 18, 6 and 12 is 36

In order to convert fraction into equivalent fraction having 12 as denominator

= [(7 × 2)/ (18 × 2)] + [(5 × 6)/ (6 × 6)] + [(13 × 3)/ (12 × 3)]

On further calculation

= 14/36 + 30/36 + 39/36

We get

= (14 + 30 + 39)/36 = 83/36

6. Replace ☐ by the correct number:

(i) ☐ – 5/8 = 1/4

(ii) ☐ – 1/5 = 1/2

(iii) 1/2 – ☐ = 1/6

Solution:

(i) ☐ – 5/8 = 1/4

It can be written as

☐ = 1/4 + 5/8

On further calculation

☐ = [(1 × 2)/ (4 × 2)] + [(5 × 1)/ (8 × 1)]

We get

☐ = 2/8 + 5/8

By addition

☐= (2 + 5)/ 8 = 7/8

(ii) ☐ – 1/5 = 1/2

It can be written as

☐ = 1/2 + 1/5

On further calculation

☐ = [(1 × 5)/ (2 × 5)] + [(1 × 2)/ (5 × 2)]

We get

☐ = 5/10 + 2/10

By addition

☐ = (2 + 5)/ 10 = 7/10

(iii) 1/2 – ☐ = 1/6

It can be written as

☐ = 1/2 – 1/6

On further calculation

☐ = [(1 × 3)/ (2 × 3)] – [(1 × 1)/ (6 × 1)]

We get

☐ = 3/6 – 1/6

By addition

☐ = (3 – 1)/ 6 = 2/6 = 1/3

7. Savita bought 2/5 m of ribbon and Kavita 3/4 m of the ribbon. What was the total length of the ribbon they bought?

Solution:

Length of ribbon Savita bought = 2/5 m

Length of ribbon Kavita bought = 3/4 m

So the total length of ribbon they bought = 2/5 + 3/4

We know that the LCM of 5 and 4 is 20

So we get

= [(2 × 4)/ (5 × 4)] + [(3 × 5)/ (4 × 5)]

On further calculation

= 8/20 + 15/20

We get

= (8 + 15)/20 = 23/20 m

Hence, the total length of the ribbon they bought is 23/20 m.

8. Ravish takes 2 1/5 minutes to walk across the school ground. Rahul takes 7/4 minutes to do the same. Who takes less time and by what fraction?

Solution:

Time taken by Ravish to walk across the school ground = 2 1/5 minutes = 11/5 minutes

Time taken by Rahul to walk across the school ground = 7/4 minutes

By comparing 11/5 and 7/4 minutes

We know that LCM of 4 and 5 is 20

In order to convert fraction into equivalent fraction having 20 as denominator

[(11 × 4)/ (5 × 4)], [(7 × 5)/ (4 × 5)]

So we get 44/20 > 35/20

So Rahul takes less time

It can be written as

44/20 – 35/20 = (44 – 35)/20 = 9/20 minutes

Hence, Rahul takes less time by 9/20 minutes.

9. A piece of a wire 7/8 metres long broke into two pieces. One piece was ¼ meter long. How long is the other piece?

Solution:

It is given that

Length of wire = 7/8 m

Length of first piece = 1/4 m

Consider x m as the length of second piece

It can be written as

Length of wire = Length of first piece + Length of second piece

By substituting the values

7/8 = 1/4 + x

On further calculation

x = 7/8 – 1/4

We know that the LCM of 8 and 4 is 8

x = [(7 × 1)/ (8 × 1)] – [(1 × 2)/ (4 × 2)]

We get

x = 7/8 – 2/8

By subtraction

x = (7 – 2)/ 8 = 5/8 m

Hence, the length of second piece of wire is 5/8 m.

10. Shikha and Priya have bookshelves of the same size Shikha’s shelf is 5/6 full of book and Priya’s shelf is 2/5 full. Whose bookshelf is more full? By what fraction?

Solution:

Fraction of Shikha’s shelf filled with books = 5/6

Fraction of Priya’s shelf filled with books = 2/5

We know that LCM of 5 and 6 is 30

In order to convert fraction into equivalent fraction having 30 as denominator

= [(5 × 5)/ (6 × 5)], [(2 × 6)/ (5 × 6)]

So we get 25/30 > 12/30

So Shikha’s shelf is more full.

It can be written as

25/30 – 12/30 = (25 – 12)/ 30 = 13/30

Hence, Shikha’s bookshelf is more full by 13/30.

11. Ravish’s house is 9/10 km from his school. He walked some distance and then took a bus for 1/2km upto the school. How far did he walk?

Solution:

It is given that

Distance of Ravish’s house from his school = 9/10 km

Distance covered by bus = 1/2 km

It can be written as

Distance between house and school = Distance covered by walking + Distance covered by bus

So we get

Distance covered by walking = Distance between house and school – Distance covered by bus

Substituting values

Distance covered by walking = 9/10 – 1/2

We know that LCM of 10 and 2 is 10

In order to convert fraction into equivalent fraction having 10 as denominator

Distance covered by walking = [(9 × 1)/ (10 × 1)] – [(1 × 5)/ (2 × 5)]

We get

Distance covered by walking = 9/10 – 5/10

By subtraction

Distance covered by walking = (9 – 5)/ 10 = 4/10 = 2/5 km

Hence, the distance covered by Ravish by walking is 2/5km.

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 PDF Download

Students looking to master the addition and subtraction of fractions can refer to the detailed solutions provided in this exercise.

These solutions are explained step-by-step to help students understand the concepts easily and improve their problem-solving skills.

You can download the PDF of RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 from the link given below and study anytime, even without an internet connection.

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9

Study without using the internet

Preparation Tips for RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9

To prepare effectively for Chapter 6 Exercise 6.9 on adding and subtracting fractions, students should focus on understanding fraction concepts and practicing a variety of problems. Here are some helpful tips:

  • Review the basics of fractions, including terms like numerator, denominator, and types of fractions before starting the exercise.

  • Understand how to find the least common denominator (LCD) for adding and subtracting fractions with unlike denominators.

  • Solve all questions in Exercise 6.9 carefully, and use RD Sharma Solutions to verify your answers and methods.

  • Practice additional fraction problems from sample papers or worksheets to improve speed and accuracy.

  • Try solving Previous Year Questions (PYQs) related to fractions to get familiar with common question formats.

  • Time yourself while solving practice questions to improve problem-solving under exam conditions.

  • Maintain a notebook with key formulas, steps for fraction operations, and solved examples for quick revision.

  • These exercises are based on the latest Class 6 Maths syllabus, helping students stay focused on important topics for exams.

 

RD Sharma Solutions for Class 6 Maths Chapter 6 Exercise 6.9 FAQs

What topics are covered in Exercise 6.9?

Exercise 6.9 covers addition and subtraction of fractions, including like and unlike denominators.

Are the solutions easy to understand?

Yes, the solutions are explained step-by-step to help students grasp the concepts clearly.

How can these solutions help in exams?

They help students practice important types of fraction problems, improving accuracy and confidence for exams.

Are these solutions updated as per the latest syllabus?

Yes, the solutions are prepared according to the latest CBSE syllabus.
Join 15 Million students on the app today!
Point IconLive & recorded classes available at ease
Point IconDashboard for progress tracking
Point IconMillions of practice questions at your fingertips
Download ButtonDownload Button
Banner Image
Banner Image
Free Learning Resources
Know about Physics Wallah
Physics Wallah is an Indian edtech platform that provides accessible & comprehensive learning experiences to students from Class 6th to postgraduate level. We also provide extensive NCERT solutions, sample paper, NEET, JEE Mains, BITSAT previous year papers & more such resources to students. Physics Wallah also caters to over 3.5 million registered students and over 78 lakh+ Youtube subscribers with 4.8 rating on its app.
We Stand Out because
We provide students with intensive courses with India’s qualified & experienced faculties & mentors. PW strives to make the learning experience comprehensive and accessible for students of all sections of society. We believe in empowering every single student who couldn't dream of a good career in engineering and medical field earlier.
Our Key Focus Areas
Physics Wallah's main focus is to make the learning experience as economical as possible for all students. With our affordable courses like Lakshya, Udaan and Arjuna and many others, we have been able to provide a platform for lakhs of aspirants. From providing Chemistry, Maths, Physics formula to giving e-books of eminent authors like RD Sharma, RS Aggarwal and Lakhmir Singh, PW focuses on every single student's need for preparation.
What Makes Us Different
Physics Wallah strives to develop a comprehensive pedagogical structure for students, where they get a state-of-the-art learning experience with study material and resources. Apart from catering students preparing for JEE Mains and NEET, PW also provides study material for each state board like Uttar Pradesh, Bihar, and others

Copyright © 2026 Physicswallah Limited All rights reserved.