Physics Wallah

GATE Syllabus 2026, Exam Pattern, Subject Wise PDF

GATE Syllabus 2026 is available here for all the branches to ace the preparation of aspirants. Download the branch-wise GATE 2026 Syllabus PDF and review the exam pattern to prepare effectively.
authorImageSiddharth Pandey28 Aug, 2025
Share

Share

GATE Syllabus 2025

GATE Syllabus 2026: The Indian Institute of Technology, Guwahati (IITG) will administer the GATE 2026 examination to facilitate admission to ME/M.Tech and Ph.D. courses to most reputed institutions of the nation. The GATE Score is also used for PSU recruitments to offer Engineer Trainees, Management Trainees, and other positions in different specializations.

The organizing authority published the GATE Syllabus 2026 PDF on its official portal @gate2026.iitg.ac.in containing topic-wise breakdown for all the subjects. The GATE Syllabus indicates the list of topics on which the questions will be asked in the examination.

Check: GATE Result 2025

Check: GATE Scorecard 2025

A proper understanding of GATE Syllabus 2026 is essential for aspirants to figure out the important topics for all the sections to analyze the weightage. Aspirants must be well versed with GATE Syllabus 2026 to align the effective preparation strategy to cover it.

Check: GATE Toppers List 2025

Also, check: PW GATE Toppers List 2025

GATE Syllabus 2026

The GATE Syllabus consists of three major sections viz. General Aptitude, Engineering Mathematics, and Core Engineering subjects which are included in the graduation level.

IIT Guwahati released the GATE Syllabus 2026 @gate2026.iitg.ac.in. Candidates who are aiming to crack the GATE 2026 must have a thorough understanding of the GATE 2026 Syllabus to get familiar with the important topics and weightage of sections. 

To get admission to the most prestigious institutions in ME/M. Tech/Ph.D. courses, and jobs in Public Sector Undertakings, candidates must have a valid GATE 2026 Score in the respective branch to explore better career opportunities.

PW Online GATE Coaching

IITG GATE Syllabus 2026

IIT Guwahati (IITG) is the conducting authority of the Graduate Aptitude Test In Engineering for 2026. The GATE 2026 Exam will be organized for 30 various disciplines such as ME, CE, EE, CH, EC, CS, DA, XE, AE, IN, and more. If any new branch is introduced, you will be able to find the details here.

The GATE question paper will be framed based on a pre-decided syllabus which will consist of a total of 65 questions from General Aptitude, Engineering Mathematics, and Specific Technical Subjects. Here is the complete syllabus for GATE 2026 to gear up the preparation of aspirants.

GATE Syllabus 2026 Overview

The GATE Syllabus 2026 made public in PDF format for all the branches. The GATE syllabus covers all the topics and sub-topics asked in the examination. Test takers are advised to go through the GATE 2026 Syllabus PDF to initiate their preparation accordingly:

GATE Syllabus 2026 Overview

Particulars

Details

Exam Name

GATE 2026

GATE Full Form

Graduate Aptitude Test In Engineering

Organizing Authority

IIT Guwahati

GATE Syllabus 2026 Release Date

Released

GATE Syllabus 2026 Official Website

https://gate2026.iitg.ac.in

Sections in GATE Syllabus 2026

  • General Aptitude

  • Engineering Mathematics

  • Core Engineering Disciplines

Total No. of Papers

30 (as per GATE 2025 details)

GATE Exam Date 2026

07, 08, 14, 15, February 2026

IIT Guwahati GATE Syllabus 2026

Candidates who are planning to write the GATE 2026 Paper are advised to plan their preparation strategy in accordance with the syllabus. As the official GATE Syllabus 2026 made public along with the ohter details like eligibility, important dates.The syllabus almost remains the same for all the branches.

GATE 2026 Syllabus - Official Link

GATE Syllabus 2026 - List of Subjects

Candidates can find the names and codes of the subjects included in the GATE 2026 Syllabus from the table below:

GATE Syllabus 2026 Subjects List

1

Aerospace Engineering

AE

2

Agricultural Engineering

AG

3

Architecture and Planning

AR

4

Biotechnology

BT

5

Civil Engineering

CE

6

Chemical Engineering

CH

7

Computer Science and Information Technology

CS

8

Chemistry

CY

9

Electronics and Communication Engineering

EC

10

Electrical Engineering

EE

11

Ecology and Evolution

EY

12

Geology and Geophysics

GG

13

Instrumentation Engineering

IN

14

Mathematics

MA

15

Mechanical Engineering

ME

16

Mining Engineering

MN

17

Metallurgical Engineering

MT

18

Petroleum Engineering

PE

19

Physics

PH

20

Production and Industrial Engineering

PI

21

Textile Engineering and Fiber Science

TF

22

Statistics

ST

23

Biomedical Engineering

BM

24

Engineering Sciences

XE

25

Life Sciences

XL

26

Humanities and Social Sciences

XH

27

Environmental Science and Engineering

ES

28

Geomatics Engineering

GE

29

Naval Architecture and Marine Engineering

NM

30

Data Science and Artificial Intelligence (NEW)

DA

Will There Any Changes In GATE 2026 Syllabus?

Usually, the GATE Syllabus remains the same every year, so GATE 2027 aspirants can also follow this syllabus, and if any changes are to be made in the syllabus the conducting institute will inform regarding the same as earlier for the reference of students.

There is a new paper added in the GATE 2026 i.e. GATE XE-I in 2026 by IIT Guwahati. IISc Bangalore introduced a new paper for Data Science and AI Engineering in GATE 2024. However, ES (Environmental Science and Engineering) and XH (Humanities and Social Sciences) were added to the GATE syllabus in 2022. Additionally, NM (Naval Architecture and Marine Engineering) and GE (Geomatics Engineering) were added in 2021.

GATE Syllabus 2026 For General Aptitude

The GATE Syllabus 2026 for General Aptitude is common for all papers. It holds a total of 15% weightage in the GATE exam. Therefore, applicants must familiarize themselves with the GATE General Aptitude syllabus .

Check out the topic-wise GATE Syllabus 2026 for GA in the table below.

GATE Syllabus 2026 for General Aptitude

Sl. No.

Syllabus

1.

Verbal Ability

2.

Quantitative Aptitude

3.

Analytical Aptitude

4.

Spatial Aptitude

GATE CSE Syllabus 2026

The GATE CSE Syllabus (Computer Science Engineering) comprises General Aptitude, Engineering Mathematics, and Core Subjects from Computer Science Engineering, as outlined below for applicants ease of understanding.

GATE CSE Syllabus 2026

Topics

Sub-Topics

Discrete Mathematics

Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions

Digital Logic

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating-point)

Computer Organization and Architecture

Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction pipelining, pipeline hazards. Memory hierarchy: cache, main memory, and secondary storage; I/O interface (interrupt and DMA mode)

Programming and Data Structures

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs

Algorithms

Searching, sorting, hashing. Asymptotic worst-case time and space complexity. Algorithm design techniques: greedy, dynamic programming, and divide‐and‐conquer. Graph traversals, minimum spanning trees, shortest paths

Theory of Computation

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and context-free languages, pumping lemma. Turing machines and undecidability.

Compiler Design

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation. Local optimization, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination

Operating System

System calls, processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU and I/O scheduling. Memory management and virtual memory. File systems

Databases

ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control

Computer Networks

Concept of layering: OSI and TCP/IP Protocol Stacks; Basics of packet, circuit and virtual circuit-switching; Data link layer: framing, error detection, Medium Access Control, Ethernet bridging; Routing protocols: shortest path, flooding, distance vector and link-state routing; Fragmentation and IP addressing, IPv4, CIDR notation, Basics of IP support protocols (ARP, DHCP, ICMP), Network Address Translation (NAT); Transport layer: flow control and congestion control, UDP, TCP, sockets; Application layer protocols: DNS, SMTP, HTTP, FTP, Email

 

Free GATE CSE Notes by PW

Just one click away!

GATE Mechanical Engineering Syllabus 2026

The GATE Mechanical Engineering Syllabus is structured into five primary sections, each comprising several sub-topics. These sections include General Aptitude, Engineering Mathematics, Applied Mechanics and Design, Fluid Mechanics and Thermal Sciences, and Materials, Manufacturing, and Industrial Engineering.

GATE Mechanical Syllabus 2026

Topics

Sub-Topics

Applied Mechanics and Design

Engineering Mechanics

Free-body diagrams and equilibrium; friction and its applications including rolling friction, belt-pulley, brakes, clutches, screw jack, wedge, vehicles, etc.; trusses and frames; virtual work; kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Lagrange’s equation

Mechanics of Materials

Stress and strain, elastic constants, Poisson's ratio; Mohr’s circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; concept of shear center; deflection of beams; torsion of circular shafts; Euler’s theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength

Theory of Machines

Displacement, velocity, and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope

Vibrations

Free and forced vibration of single degree of freedom systems, the effect of damping; vibration isolation; resonance; critical speeds of shafts

Machine Design

Design for static and dynamic loading; failure theories; fatigue strength and the SN diagram; principles of the design of machine elements such as bolted, riveted, and welded joints; shafts, gears, rolling and sliding contact bearings, brakes, and clutches, springs

Fluid Mechanics and Thermal Sciences

Fluid Mechanics

Fluid properties; fluid statics, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum, and energy; fluid acceleration; differential equations of continuity and momentum; Bernoulli’s equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow

Heat-Transfer

Modes of heat transfer; one-dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler's charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien's displacement law, black and grey surfaces, view factors, radiation network analysis

Thermodynamics

Thermodynamic systems and processes; properties of pure substances, behavior of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations

Applications

Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines; steam and gas turbines

Materials, Manufacturing, and Industrial Engineering

Engineering Materials

Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials

Casting, Forming and Joining Processes

Different types of castings, design of patterns, molds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding

Machining and Machine Tool Operations

Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, jigs and fixtures; abrasive machining processes; NC/CNC machines and CNC programming

Metrology and Inspection

Limits, fits and tolerances; linear and angular measurements; comparators; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly; concepts of coordinate-measuring machine (CMM)

Computer Integrated Manufacturing

Basic concepts of CAD/CAM and their integration tools; additive manufacturing

Production Planning and Control

Forecasting models, aggregate production planning, scheduling, materials requirement planning; lean manufacturing

Inventory Control

Deterministic models; safety stock inventory control systems

Operations Research

Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM

 

Free GATE Mechanical Engineering Notes By PW

Just one click away!

GATE Electrical Syllabus 2026

The GATE Electrical syllabus is divided into 11 different sections, each encompassing various topics:

General Aptitude, Engineering Mathematics, Electric Circuits, Electromagnetic Fields, Signals and Systems, Electrical Machines, Power Systems, Control Systems, etc., as outlined below.

GATE Electrical Syllabus 2026

Topics

Sub-Topics

Electric Circuits: Network elements

ideal voltage and current sources, dependent sources, R, L, C, M elements; Network solution methods: KCL, KVL, Node and Mesh analysis; Network Theorems: Thevenin’s, Norton’s, Superposition and Maximum Power Transfer theorem; Transient response of dc and ac networks, sinusoidal steady-state analysis, resonance, two port networks, balanced three phase circuits, star-delta transformation, complex power and power factor in ac circuits

Electromagnetic Fields

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations

Signals and Systems

Representation of continuous and discrete-time signals, shifting and scaling properties, linear time-invariant and causal systems, Fourier series representation of continuous and discrete-time periodic signals, sampling theorem, Applications of Fourier Transform for continuous and discrete-time signals, Laplace Transform and Z transform. R.M.S. value, average value calculation for any general periodic waveform

Electrical Machines

Single-phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase transformers: connections, vector groups, parallel operation; Auto-transformer, Electromechanical energy conversion principles; DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors; Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators, starting of synchronous motors; Types of losses and efficiency calculations of electric machines

Power Systems

Basic concepts of electrical power generation, ac and dc transmission concepts, Models and performance of transmission lines and cables, Economic Load Dispatch (with and without considering transmission losses), Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss-Seidel and Newton-Raphson load flow methods, Voltage and Frequency Control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of overcurrent, differential, directional and distance protection; Circuit breakers, System stability concepts, Equal area criterion

Control Systems

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and signal flow graphs, Transient and Steady‐state analysis of linear time-invariant systems, Stability analysis using Routh-Hurwitz and Nyquist criteria, Bode plots, root loci, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State-space model, Solution of state equations of LTI systems

Electrical and Electronic Measurements

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis

Analog and Digital Electronics

Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: biasing, equivalent circuit and frequency response; oscillators and feedback amplifiers; operational amplifiers: characteristics and applications; single-stage active filters, Active Filters: Sallen Key, Butterwoth, VCOs and timers, combinatorial and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers, sample and hold circuits, A/D and D/A converters

Power Electronics

Static V-I characteristics and firing/gating circuits for Thyristor, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost Converters; Single and three-phase configuration of uncontrolled rectifiers; Voltage and Current commutated Thyristor based converters; Bidirectional ac to dc voltage source converters; Magnitude and Phase of line current harmonics for uncontrolled and thyristor-based converters; Power factor and Distortion Factor of ac to dc converters; Single-phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation

 

Free GATE Electrical Engineering Notes By PW

Just one click away!

GATE IN Syllabus 2026

In addition to General Aptitude and Engineering Mathematics, the GATE Instrumentation Engineering syllabus includes topics such as electricity and magnetism, signals, and systems, among others, as explained below:

GATE Instrumentation Engineering Syllabus 2026

Subject

Topics

Engineering Mathematics

  • Linear Algebra

  • Calculus

  • Differential Equations

  • Analysis of Complex Variables

  • Probability and Statistics

  • Numerical Methods

Electricity and Magnetism

Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss's Law, Divergence, Electric field and potential due to point, line, plane, and spherical charge distributions, Effect of the dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Electrical Circuits and Machines

Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductance and capacitor; transient analysis of RLC circuits with dc excitation. Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems. Peak-, average- and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements. transient analysis of RLC circuits with ac excitation. One-port and two-port networks, driving point impedance and admittance, open-, and short circuit parameters. Single-phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three-phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Types of losses and efficiency calculations of electric machines

Signals and Systems

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second-order linear time-invariant systems, impulse response of systems; convolution, correlation. Discrete-time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

Control Systems

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, PI, PID, cascade, feedforward, and ratio controllers, tuning of PID controllers and sizing of control valves.

Analog Electronics

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small-signal analysis of transistor circuits, feedback amplifiers. Characteristics of ideal and practical operational amplifiers; applications: adder, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, precision rectifier, active filters, oscillators, signal generators, voltage-controlled oscillators and phase-locked loop, sources and effects of noise and interference in electronic circuits.

Digital Electronics

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to-digital (successive approximation, integrating, flash and sigma-delta) and digital-to-analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, Embedded Systems: Microprocessor and microcontroller applications, memory and input-output interfacing; basics of data acquisition systems, basics of distributed control systems (DCS) and programmable logic controllers (PLC).

Measurements

SI units, standards (R,L,C, voltage, current and frequency), systematic and random errors in measurement, expression of uncertainty - accuracy and precision, propagation of errors, linear and weighted regression. Bridges: Wheatstone, Kelvin, Megohm, Maxwell, Anderson, Schering and Wien for measurement of R, L, Cand frequency, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Sensors and Industrial Instrumentation

Resistive-, capacitive-, inductive-, piezoelectric-, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement. 4-20 mA two-wire transmitter.

Communication and Optical Instrumentation

Amplitude- and frequency modulation and demodulation; Shannon's sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude-, phase-, frequency-, quadrature amplitude, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light-dependent resistor, square-law detectors, and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing. UV-VIS Spectrophotometers, Mass spectrometer.

GATE CE Syllabus 2026

The GATE CE Syllabus (Civil Engineering) is explained in this section. Applicants preparing for the GATE CE exam must ensure they implement the following topics in their study plan.

GATE CE Syllabus 2026

Topics

Sub-Topics

Structural Engineering

Engineering Mechanics

System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Frictions and its applications; Centre of mass; Free Vibrations of undamped SDOF system

Solid Mechanics

Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, Transformation of stress; buckling of column, combined and direct bending stresses

Structural Analysis

Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis

Construction Materials and Management

Construction Materials: Structural Steel – Composition, material properties and behavior; Concrete - Constituents, mix design, short-term and long-term properties. Construction Management: Types of construction projects; Project planning and network analysis - PERT and CPM; Cost estimation

Concrete Structures

Working stress and Limit state design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete beams

Steel Structures

Working stress and Limit state design concepts; Design of tension and compression members, beams and beam-columns, column bases; Connections - simple and eccentric, beam-column connections, plate girders and trusses; Concept of plastic analysis -beams and frames

Geotechnical Engineering

Soil Mechanics

Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability - one-dimensional flow, Seepage through soils – two - dimensional flow, flow nets, uplift pressure, piping, capillarity, seepage force; Principle of effective stress and quicksand condition; Compaction of soils; One- dimensional consolidation, time rate of consolidation; Shear Strength, Mohr’s circle, effective and total shear strength parameters, Stress-Strain characteristics of clays and sand; Stress paths

Foundation Engineering

Sub-surface investigations - Drilling boreholes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories - Rankine and Coulomb; Stability of slopes – Finite and infinite slopes, Bishop’s method; Stress distribution in soils – Boussinesq’s theory; Pressure bulbs, Shallow foundations – Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – dynamic and static formulae, Axial load capacity of piles in sands and clays, pile load test, pile under lateral loading, pile group efficiency, negative skin friction

Water Resources Engineering

Fluid Mechanics

Properties of fluids, fluid statics; Continuity, momentum and energy equations and their applications; Potential flow, Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth; Concept of lift and drag

Hydraulics

Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Channel Hydraulics - Energy-depth relationships, specific energy, critical flow, hydraulic jump, uniform flow, gradually varied flow and water surface profiles

Hydrology

Hydrologic cycle, precipitation, evaporation, evapotranspiration, watershed, infiltration, unit hydrographs, hydrograph analysis, reservoir capacity, flood estimation and routing, surface runoff models, groundwater hydrology - steady state well hydraulics and aquifers; Application of Darcy’s Law

Irrigation

Types of irrigation systems and methods; Crop water requirements - Duty, delta, evapotranspiration; Gravity Dams and Spillways; Lined and unlined canals, Design of weirs on permeable foundation; cross drainage structures

Environmental Engineering

Water and Waste Water Quality and Treatment

Basics of water quality standards – Physical, chemical and biological parameters; Water quality index; Unit processes and operations; Water requirement; Water distribution system; Drinking water treatment; Sewerage system design, quantity of domestic wastewater, primary and secondary treatment. Effluent discharge standards; Sludge disposal; Reuse of treated sewage for different applications

Air Pollution

Types of pollutants, their sources and impacts, air pollution control, air quality standards, Air quality Index and limits

Municipal Solid Wastes

Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal)

Transportation Engineering

Transportation Infrastructure

Geometric design of highways - cross-sectional elements, sight distances, horizontal and vertical alignments. Geometric design of railway Track – Speed and Cant. Concept of airport runway length, calculations and corrections; taxiway and exit taxiway design

Highway Pavements

Highway materials - desirable properties and tests; Desirable properties of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible and rigid pavement using IRC codes

Traffic Engineering

Traffic studies on flow and speed, peak hour factor, accident study, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Traffic signs; Signal design by Webster’s method; Types of intersections; Highway capacity

Geomatics Engineering

Geomatics Engineering

Principles of surveying; Errors and their adjustment; Maps - scale, coordinate system; Distance and angle measurement - Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves. Photogrammetry and Remote Sensing - Scale, flying height; Basics of remote sensing and GIS

 

Free GATE Civil Engineering Notes By PW

Just one click away!

GATE ECE Syllabus 2026

The GATE ECE Syllabus (Electronics and Communication Engineering) is structured into eight sections: Engineering Mathematics, Networks, Signals, and Systems, Electronic Devices, Analog Circuits, Digital Circuits, Control Systems, Communications, and Electromagnetics.

GATE ECE Syllabus 2026

Sl. No.

Sections

Topic-Wise Syllabus

1

Engineering Mathematics

  • Linear Algebra

  • Calculus

  • Differential Equations

  • Vector Analysis

2

Networks, Signals and Systems

Circuit analysis: Node and mesh analysis, superposition, Thevenin's theorem, Norton’s theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer. Time and frequency domain analysis of linear circuits: RL, RC and RLC circuits, solution of network equations using Laplace transform, Linear 2-port network parameters, wye-delta transformation Continuous-time signals: Fourier series and Fourier transform, sampling theorem and applications Discrete-time signals: DTFT, DFT, z-transform, discrete-time processing of continuous-time signals. LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeroes, frequency response, group delay, phase delay

3

Electronic Devices

  • Energy bands in intrinsic and extrinsic semiconductors, equilibrium carrier concentration, direct and indirect band-gap semiconductors.

  • Carrier transport: diffusion current, drift current, mobility and resistivity, generation and recombination of carriers, Poisson, and continuity equations. P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photodiode, and solar cell.

4

Analog Circuits

  • Diode circuits: clipping, clamping, and rectifiers.

  • BJT and MOSFET amplifiers: biasing, ac coupling, small-signal analysis, frequency response. Current mirrors and differential amplifiers.

  • Op-amp circuits: Amplifiers, summers, differentiators, integrators, active filters, Schmitt triggers, and oscillators

5

Digital Circuits

  • Number representations: binary, integer, and floating-point- numbers.

  • Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates, and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, and decoders.

  • Sequential circuits: latches and flip-flops, counters, shift-registers, finite state machines, propagation delay, setup and hold time, critical path delay.

  • Data converters: sample and hold circuits, ADCs, and DACs.

  • Semiconductor memories: ROM, SRAM, DRAM.

  • Computer organization: Machine instructions and addressing modes, ALU, data-path, control unit, instruction pipelining

6

Control Systems

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

7

Communications

  • Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems.

  • Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers.

  • Information theory: entropy, mutual information, and channel capacity theorem.

  • Digital communications: PCM, DPCM, digital modulation schemes (ASK, PSK, FSK, QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver, SNR, and BER.

  • Fundamentals of error correction, Hamming codes, CRC.

8

Electromagnetics

  • Maxwell's equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector.

  • Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth.

  • Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart.

  • Rectangular and circular waveguides, light propagation in optical fibers, dipole and monopole antennas, linear antenna arrays.

 

Free GATE ECE Notes By PW

Just one click away!

GATE Syllabus 2026 PDF (Subject Wise)

The GATE syllabus 2026 PDF will be made available for download at gate2026.iitg.ac.in. However, applicants can download the subject wise GATE Syllabus 2025 PDF from the direct links provided below in the table, as generally there is no change in syllabus over year:

GATE Exam Pattern 2026

The GATE Exam Pattern released by the IIT Guwahati on the official website, gate2026.iitg.ac.in. The exam pattern includes important information such as the mode of examination, the number of questions, the sections in the paper, the marking scheme, and other details. It is crucial for candidates to be familiar with the GATE syllabus for 2026 as well as the exam pattern.

A detailed GATE Exam Pattern 2026 has been tabulated below for the better understanding of aspirants:

GATE Exam Pattern 2026

Particulars

Details

Examination Mode

Computer Based Test (Online)

Duration

3 Hours

Number of Papers in GATE 2026

30 Papers

Section

  • General Aptitude (GA)

  • Candidate Selected Subject

Type of Questions

  • Multiple Choice Questions (MCQs)

  • Multiple Select Questions (MSQs)

  • Numerical Answer Type (NAT) Questions

Design of Questions

  • The questions are designed to test the listed abilities

  • Application

  • Analysis

  • Comprehension

  • Recall

  • Synthesis

Number of Questions

65 Questions (including 10 questions from General Aptitude)

Distribution of Questions in all Papers except AR, CY, EY, GG, MA, PH, and XL

  • Engineering Mathematics - 13 Marks

  • Subject Questions - 72 Marks

  • General Aptitude - 15 Marks

Distribution of Questions in AR, CY, EY, GG, MA, PH, XH, and XL

  • Questions from Subject Concerned - 85 Marks

  • General Aptitude - 15 Marks

Total Marks

100 Marks

Marking Scheme

Each correct answer in the exam will be awarded either 1 or 2 marks

GATE Negative Marking

  • For 1 mark MCQ, 1/3 mark will be deducted for a wrong answer;

  • For 2-mark MCQ, 2/3 mark will be deducted for a wrong answer;

  • No negative marking for MSQs and NATs

GATE Syllabus 2026 - Preparation Tips

The GATE Syllabus for 2026 is extensive; applicants planning to appear in the forthcoming exam must have a robust strategy to cover all the important topics of their respective papers.

Check out some of the best GATE Preparation Tips tried and tested by the toppers below.

  • Start your GATE exam preparation by comprehensively understanding its syllabus. This approach aids in identifying important topics and streamlining the complete syllabus.

  • Examine the GATE exam pattern to get familiar with the structure of the question paper and the allocated time duration.

  • Applicants are recommended to take GATE 2026 mock tests every day to improve their time management skills.

  • Refer to the relevant GATE books and additional online courses, as they provide an in-depth understanding of complicated topics.

  • Solve as many of GATE previous year's question papers as possible. This helps in grasping the approach used in setting up the paper and also aids in identifying the repeated topics on which questions are continuously asked.

Elevate your GATE readiness with Physics Wallah’s GATE Online Courses . PW GATE Online Coaching offers comprehensive live sessions tailored to the syllabus, invaluable study materials, practice tests, and much more

GATE Syllabus 2026 FAQ

Is the GATE Syllabus 2026 released?

The GATE Syllabus 2026 has been released by the conducting authority, IIT Guwahati on its official website gate2026.iitg.ac.in.

When should I start GATE 2026 preparation?

The GATE Syllabus is extensive, so candidates should begin their preparation as early as possible. Covering the entire syllabus requires at least 5 to 6 months.

How many sections are there in the GATE Syllabus?

The GATE Syllabus is classified into three parts viz. General Aptitude, Engineering Mathematics and Core Engineering Subjects of the relevant branch.

From where can I find the GATE 2026 Syllabus?

Candidates can download the branch-wise syllabus for GATE 2026 by clicking the direct links in the article.

How many questions will there be in the GATE 2026 exam?

The GATE 2026 exam will consist of 65 questions with a total weightage of 100 marks.

Will there be a negative marking in GATE 2026?

Yes, the GATE 2026 will have a negative marking for MCQ questions.
Join 15 Million students on the app today!
Point IconLive & recorded classes available at ease
Point IconDashboard for progress tracking
Point IconMillions of practice questions at your fingertips
Download ButtonDownload Button
Banner Image
Banner Image
Free Learning Resources
Know about Physics Wallah
Physics Wallah is an Indian edtech platform that provides accessible & comprehensive learning experiences to students from Class 6th to postgraduate level. We also provide extensive NCERT solutions, sample paper, NEET, JEE Mains, BITSAT previous year papers & more such resources to students. Physics Wallah also caters to over 3.5 million registered students and over 78 lakh+ Youtube subscribers with 4.8 rating on its app.
We Stand Out because
We provide students with intensive courses with India’s qualified & experienced faculties & mentors. PW strives to make the learning experience comprehensive and accessible for students of all sections of society. We believe in empowering every single student who couldn't dream of a good career in engineering and medical field earlier.
Our Key Focus Areas
Physics Wallah's main focus is to make the learning experience as economical as possible for all students. With our affordable courses like Lakshya, Udaan and Arjuna and many others, we have been able to provide a platform for lakhs of aspirants. From providing Chemistry, Maths, Physics formula to giving e-books of eminent authors like RD Sharma, RS Aggarwal and Lakhmir Singh, PW focuses on every single student's need for preparation.
What Makes Us Different
Physics Wallah strives to develop a comprehensive pedagogical structure for students, where they get a state-of-the-art learning experience with study material and resources. Apart from catering students preparing for JEE Mains and NEET, PW also provides study material for each state board like Uttar Pradesh, Bihar, and others

Copyright © 2025 Physicswallah Limited All rights reserved.