Greatest Integer Function
Functions of Class 11
Greatest Integer Function
[x] denotes the greatest integer function and means greatest integer less than or equal to x.
i.e. [x] ≤ x.
e.g. [3.564] = 3 [.35] = 0 [4] = 4
[-3.564] = -4 and [-.03] = -1
In general if n is an integer and x is any real number between n and (n+1) that is
n ≤ x < n+1, then [x] = n.
Properties of Greatest Integer Function
- If f(x) = [x+n], n ∈ I then f(x) = n + [x]
- If x = [x] + {x}, then {x} denotes the fractional part of x.
- x-1 < [x] ≤ x
- [-x] = - [x], x ∈ I
- [-x] = - [x] – 1 x ∉ 1
- [x] – [-x] = 2n if x = n n ∈ I
- [x] – [-x] = 2n+1 if x = n + {x} n ∈ I, {.} denotes fractional part
- Introduction
- Algebraic Operations On Functions
- Type of Functions
- Composition of functions
- Invertible Functions
- Domain and Range of Inverse Trigonometric Functions
- Odd And Even Functions
- Periodic Functions
- Methods to Find Period of A Periodic Function
- Signum Function
- Greatest Integer Function
- Modulus Function or Absolute Value Function
- Rational And Irrational Function
- Algebraic And Transcendental Function
- Explicit Function
- Exercise 1
- Exercise 3(Subjective)