Some Typical Examples

Trignometric functions of Class 11

Some Typical Examples

(a) Given that (1 + cos α) (1 + cos β) (1 + cos γ) = (1 - cos α) (1 - cos β) (1 - cos γ) show that one of the values of each member of this equality is sin α sin β sin γ.

Solution :

Multiplying both sides of the given equality by (1 + cos α) (1 + cos β) (1 + cos γ) we
get (1 + cos α)2 (1 + cos β)2 (1 + cos γ)2 = sin2α sin2β sin2γ. So that one of the values
of (1 + cos α) (1 + cos β) is (1 + cos γ) is sin α sin β sin γ which is also one of the values of (1 - cos α) (1 - cos β) (1 - cos γ)

(b) If a2 + b2 + 2ab cos θ = 1, c2 + d2 + 2cd cos θ = 1 and ac + bd + (ad + bc) cos θ = 0 prove that a2 + c2 = cosec2 θ.

Solution:

From the given relations, we have

(b + a cos θ)2 = 1 - a2 sin2 θ and (1)

(d + c cos θ)2 = 1 - c2 sin2 θ (2)

Multiplying (1) and (2) we get

(b + a cos θ)2 (d + c cos θ)2 = (1 – a2 sin2 θ) (1 − c2 sin2θ) (3)

also (b + a cos θ) (d + c cos θ) = bd + (ad + bc) cos θ + ac cos2 θ

= bd + ac + (ad + bc) cos θ - ac sin2 θ = -ac sin2 θ [given in condition]

Hence from (3) it follows that

(1 – a2 sin2 θ) (1 – c2 sin2 θ) = a2c2 sin4 θ

⇒ 1 – (a2 + c2) sin2 θ + a2c2 sin4 θ = a2c2 sin4 θ

⇒ (a2 + c2) sin2 θ = 1 ⇒ a2 + c2 = cosec2 θ

(c) Find the values of a for which the equation sin4x + cos4x = a has real solution.

Solution:

We have sin4x + cos4x = a

⇒ (sin2x + cos2x) −2sin2xcos2x = a

⇒ 1 − 1/2sin22x = a

⇒ sin22x = 2(1 −a)

since 0 ≤ sin22x ≤ 1

so 0 ≤ 2(1 − a) ≤ 1 or 1/2 ≤ a ≤ 1

Next (sin2x + cos2x)2 - 2 sin2x cos2x = a

⇒ 1/2 sin2x = 1-a.

Or 1 – a ≤ 1/2 or 1/2 ≤ a implying that 1/2 ≤ a ≤ 1.

(d) Prove that 4 sin 27° = (5 + √5 )½ - (3 - √5 )½

Solution:

sin 54° = cos 36° = Some Typical Examples

cos 54° = Some Typical Examples

⇒ 1 – 2 sin2 27° = Some Typical Examples

⇒ 2 sin2 27 = Some Typical Examples

⇒ 16 sin2 27° = Some Typical Examples = {(5 + √5)½ - (3 - √5)½}2

⇒ 4 sin 27° = (5 + √5)½ - (3 - √5)½

(e) If A,B,C are the angles of a triangle such that angle A is obtuse, prove that tan B tan C < 1.

Solution:

Since A > π/2  we have 0 < B + C < π/2

⇒ tan (B+C) > 0 ⇒ Some Typical Examples

⇒ tan B tan C < 1 as tan B and tan C > 0

Talk to Our counsellor