Some Typical Examples
Trignometric functions of Class 11
Some Typical Examples
(a) Given that (1 + cos α) (1 + cos β) (1 + cos γ) = (1 - cos α) (1 - cos β) (1 - cos γ) show that one of the values of each member of this equality is sin α sin β sin γ.
Solution :
Multiplying both sides of the given equality by (1 + cos α) (1 + cos β) (1 + cos γ) we
get (1 + cos α)2 (1 + cos β)2 (1 + cos γ)2 = sin2α sin2β sin2γ. So that one of the values
of (1 + cos α) (1 + cos β) is (1 + cos γ) is sin α sin β sin γ which is also one of the values of (1 - cos α) (1 - cos β) (1 - cos γ)
(b) If a2 + b2 + 2ab cos θ = 1, c2 + d2 + 2cd cos θ = 1 and ac + bd + (ad + bc) cos θ = 0 prove that a2 + c2 = cosec2 θ.
Solution:
From the given relations, we have
(b + a cos θ)2 = 1 - a2 sin2 θ and (1)
(d + c cos θ)2 = 1 - c2 sin2 θ (2)
Multiplying (1) and (2) we get
(b + a cos θ)2 (d + c cos θ)2 = (1 – a2 sin2 θ) (1 − c2 sin2θ) (3)
also (b + a cos θ) (d + c cos θ) = bd + (ad + bc) cos θ + ac cos2 θ
= bd + ac + (ad + bc) cos θ - ac sin2 θ = -ac sin2 θ [given in condition]
Hence from (3) it follows that
(1 – a2 sin2 θ) (1 – c2 sin2 θ) = a2c2 sin4 θ
⇒ 1 – (a2 + c2) sin2 θ + a2c2 sin4 θ = a2c2 sin4 θ
⇒ (a2 + c2) sin2 θ = 1 ⇒ a2 + c2 = cosec2 θ
(c) Find the values of a for which the equation sin4x + cos4x = a has real solution.
Solution:
We have sin4x + cos4x = a
⇒ (sin2x + cos2x) −2sin2xcos2x = a
⇒ 1 − 1/2sin22x = a
⇒ sin22x = 2(1 −a)
since 0 ≤ sin22x ≤ 1
so 0 ≤ 2(1 − a) ≤ 1 or 1/2 ≤ a ≤ 1
Next (sin2x + cos2x)2 - 2 sin2x cos2x = a
⇒ 1/2 sin2x = 1-a.
Or 1 – a ≤ 1/2 or 1/2 ≤ a implying that 1/2 ≤ a ≤ 1.
(d) Prove that 4 sin 27° = (5 + √5 )½ - (3 - √5 )½
Solution:
sin 54° = cos 36° =
cos 54° =
⇒ 1 – 2 sin2 27° =
⇒ 2 sin2 27 =
⇒ 16 sin2 27° = = {(5 + √5)½ - (3 - √5)½}2
⇒ 4 sin 27° = (5 + √5)½ - (3 - √5)½
(e) If A,B,C are the angles of a triangle such that angle A is obtuse, prove that tan B tan C < 1.
Solution:
Since A > π/2 we have 0 < B + C < π/2
⇒ tan (B+C) > 0 ⇒
⇒ tan B tan C < 1 as tan B and tan C > 0