#### Frequently Asked Questions

Factorize x2+x-6

**Solution:**

__Explanation__**:**

On factoring the equation, we get,

x2+x-6

x2+3x-2x-6

x(x+3)-2(x+3)

(x+3)(x-2)

__Final Answer__**:**

The simplified form of the equation x2+x-6 is (x+3)(x-2).

Factorize x^2-2x-8

**Solution:**

**Explanation:**

We have;

x^{2}-2x-8

x^{2}-4x+2x-8

x(x-4)+2(x-4)

(x-4) (x+2)

x=4,x=-2

**Final answer:**

Hence, we factorized the given expression as, x=4,x=-2

The opposite angles of a parallelogram are

are (3x - 2) and (x + 48) Find the measure of each angle of the parallelogram.

**Solution:**

**Explanation:**

Let the parallelogram be ABCD & the angles of parallelogram be <A,<B,<C & <D

From the given question, opposite angles of a parallelogram are (3x-2) & (x+48).

Let <A=3x-2 & <B=x+48

*As we know that, “the opposite angles of a parallelogram are always equal”. Therefore, we can write;*

(3x-2)=(x+48)

⇒3x-x=48+2

⇒2x=50

⇒x=50/2

⇒x=25

Substituting the value of x in 3x-2, we get;

3(25)-2

=75-2

=73º

⇒<A=<C=73

**Finding the measure of other two angles:**

We know that, the sum of adjacent angles of a parallelogram is equal to 180.

∴ <A+<B=180º

⇒73º+<B=180º

⇒<B=180º-73º

⇒<B=107º

∴ <D=107º

Therefore, the measure of each angle of the parallelogram is <A=73º,<B=107º,<C=73º,<D=107º.

**Final answer: **

Hence, we measured all the angles of parallelogram as;<A=73º,<B=107º,<C=73º,<D=107º.

In the given figure the value of x is

**Solution:**

**Explanation:-**

**Final answer:-**

The value of x is 125º.

Estimate the value of square root

square root :√22

**Solution:**

**Final Answer: **The estimated square root of √22 is 4.690.