Inverse Circular Functions

Trignometric equations of Class 11

Principal Values For Inverse Circular Functions

x < 0

x ≥ 0

-π/2 ≤ sin-1x <0

0 ≤ sin-1x ≤ π/2

π/2 < cos-1x ≤ π

0 ≤ cos-1x ≤ π/2

-π/2 < tan-1x < 0

0 ≤ tan-1x < π/2

π/2 < cot-1x < π

0 < cot-1x ≤ π/2

π/2 < sec-1x ≤ π

0 ≤ sec-1x < π/2

−π/2 ≤ cosec-1x < 0

0 < cosec-1x ≤ π/2

Example

sin-1(√3/2) = π/3, not 2π/3

tan-1  (-√3) = −π/3, not 2π/3

(ii) Some Results on Inverse Trigonometric Functions

(a) sin-1(−x) = −sin-1x −1 ≤ x ≤ 1

(b) cos-1(−x) = π − cos-1x −1 ≤ x ≤ 1

(c) tan-1(−x) = −tan-1x x ∈ R

(d) cot-1(−x) = π− cot-1x x ∈ R

(e) sec-1(−x) = π − sec-1x x ≤ −1 or x ≥ 1

(f) cosec-1(−x) = −cosec-1x x ≤ −1 or x ≥ 1

(g) sin-1x + cos-1x = π/2, −1 ≤ x ≤ 1

(h) tan-1x + cot-1x = π/2, x ∈ R

(i) sec-1x + cosec-1x = π/2, x ≤ −1 or x ≥ 1

(j) sec-1x = cos-1(1/x), x ≤ −1 or x ≥ 1

(k) cosec-1x = sin-1(1/x), x ≤ −1 or x ≥ 1

(l) cot-1x = tan-11/x, x > 0  = π + tan-1 1/x, x < 0

(m) If x > 0, y > 0, xy < 1, then tan-1x + tan-1y = tan-1Inverse Circular Functions

(n) If x > 0, y > 0, xy > 1, then tan-1x + tan-1y = π + tan-1 Inverse Circular Functions

(o) x < 0, y < 0, xy = 1 then tan-1x + tan-1y = π/2

(p) If x ≥ 0, y ≥ 0, x2 + y2 ≤ 1 then sin-1x + sin-1y = sin-1Inverse Circular Functions

(q) If x > 0, y > 0, x2 + y2 > 1 then sin-1x + sin-1y = π − sin-1 Inverse Circular Functions

(r) If 0 ≤ x, y ≤ 1 then sin-1x −sin-1y = sin-1Inverse Circular Functions

(s) If |x| ≤ 1, then 2tan-1x = sin-1 Inverse Circular Functions = cos-1 Inverse Circular Functions = tan-1 Inverse Circular Functions

(t) If |x| > 1 then π − 2 tan-1x = sin-1 Inverse Circular Functions = cos-1 Inverse Circular Functions = tan-1Inverse Circular Functions

Talk to Our counsellor