Important theorem
Binomial Theorem of Class 11
An Important Theorem
If = I + f, where I and n are positive integers n being odd.
0 ≤ f < 1, then show that (I + f) (1 − f) = Kn, where P – Q2 = K and .
Proof:
Given - Q < 1 ⇒ (
- Q)n < 1
Let ( - Q)n = f ′ 0 ≤ f ′ < 1
Then I + f − f′ = ( + Q)n – (√P - Q)n
RHS contain even power of on expanding
Hence RHS and I are integers.
∴ f - f′ are integers ⇒ f - f′ = 0 as -1 < f - f′ < 1
or (I + f)f = (I + f)f ′ = ( - Q)n(
+ Q)n = (P – Q2)n
Note if n is even integer
then ( + Q)n + (
- Q)n = I + f + f ′
⇒ f + f′ is also an integer
Obviously f + f′ = 1 ⇒ f′ = 1 – f
Hence (I + f)(1 – f) = (I + f) f′ = ( + Q)n (
- Q)n
= (P – Q2)n = Kn