Important theorem
Binomial Theorem of Class 11
An Important Theorem
	If 
 = I + f, where I and n are positive integers n being odd.
	0 ≤ f < 1, then show that (I + f) (1 − f) = Kn, where P – Q2 = K and 
.
Proof:
	Given 
 - Q < 1 ⇒ (
 - Q)n < 1
	Let (
 - Q)n = f ′ 0 ≤ f ′ < 1
	Then I + f − f′ = (
 + Q)n – (√P - Q)n
	RHS contain even power of 
on expanding
Hence RHS and I are integers.
∴ f - f′ are integers ⇒ f - f′ = 0 as -1 < f - f′ < 1
	or (I + f)f = (I + f)f ′ = (
 - Q)n(
 + Q)n = (P – Q2)n
Note if n is even integer
	then (
 + Q)n + (
 - Q)n = I + f + f ′
⇒ f + f′ is also an integer
Obviously f + f′ = 1 ⇒ f′ = 1 – f
	Hence (I + f)(1 – f) = (I + f) f′ = (
 + Q)n (
 - Q)n
= (P – Q2)n = Kn
        
                
                